A realization theorem in the problem of a strict analytical classification of typical germs of semihyperbolic mappings
Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 1, pp. 105-113.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of the analytic classification of germs of semi-hyperbolic mappings by the example of germs of simplest form. The final theorem, which is necessary for constructing an analytical classification, is proved — a theorem on the realization of elements of a certain functional space as functional modules of the constructed classification. To prove the theorem, the method of almost complex structures is used.
Keywords: semihyperbolic mapping, analytic classification, functional module, realization.
@article{CHFMJ_2020_5_1_a7,
     author = {P. A. Shaikhullina},
     title = {A realization theorem in the problem of a strict analytical classification of typical germs of semihyperbolic mappings},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {105--113},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a7/}
}
TY  - JOUR
AU  - P. A. Shaikhullina
TI  - A realization theorem in the problem of a strict analytical classification of typical germs of semihyperbolic mappings
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2020
SP  - 105
EP  - 113
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a7/
LA  - en
ID  - CHFMJ_2020_5_1_a7
ER  - 
%0 Journal Article
%A P. A. Shaikhullina
%T A realization theorem in the problem of a strict analytical classification of typical germs of semihyperbolic mappings
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2020
%P 105-113
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a7/
%G en
%F CHFMJ_2020_5_1_a7
P. A. Shaikhullina. A realization theorem in the problem of a strict analytical classification of typical germs of semihyperbolic mappings. Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 1, pp. 105-113. http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a7/

[1] Il'yashenko Yu.S, Yakovenko S.Yu., Analytical theory of differential equations, v. 1, MCCME, Moscow, 2013, 432 pp. (In Russ.) | MR

[2] Birkhoff G.D., Collected Mathematical Papers, v. 1, American Mathematical Society, Providance, 1950

[3] Voronin S.M., “Analytic classification of germs of conformal mappings $(\mathbb{C},0) \to (\mathbb{C},0)$ with identity linear part”, Functional Analysis and Its Applications, 15:1 (1981), 1–13 | DOI | MR | Zbl

[4] Ecalle J., “Sur les fonctions resurgentes I”, Publications Mathematiques d'Orsay, 1981, 1–250 | MR

[5] Il'yashenko Yu.S., “Nonlinear Stokes Phenomena”, Advances in Soviet Mathematics, 1992, 1–51

[6] Voronin S.M., Shaikhullina P.A., “Sectorial normalization of semihyperbolic maps”, Bulletin of Chalyabinsk State University, 2013, no. 28 (319), 94–114 (In Russ.) | MR

[7] Shaikhullina P.A., Voronin S.M., “Functional invariants of germs of semihuperbolic maps”, Chelyabinsk Physical and Mathematical Journal, 2:4 (2017), 447–455 (In Russ.) | MR

[8] Shaikhullina P.A., “Formal classification of typical germs of semihyperbolic maps”, Mathematical Notes of NEFU, 22:4 (2015), 79–90 | Zbl

[9] Stolovitch L., “Family of intersecting totally real manifolds of ($C^n,0$) and germs of holomorphic diffeomorphisms”, Bulletin de la Societe Matematique de France, 143:2 (2015), 247–263 | DOI | MR | Zbl

[10] Ueda T., “Local structure of analytic transformations of two complex variables, I”, Journal of Mathematics of Kyoto Univerdity, 26:2 (1986), 233–261 | DOI | MR | Zbl

[11] Ueda T., “Local structure of analytic transformations of two complex variables, II”, Journal of Mathematics of Kyoto Univerdity, 31:3 (1991), 695–711 | DOI | MR | Zbl

[12] Hermander L., An Introduction to Complex Analysis in Several Variables, North Holland, 1990, 268 pp. | MR

[13] Shabat B.V., Introduction to Complex Analysis, v. II, Functions of several variables, American Mathematical Society, 1992, 371 pp. | MR | Zbl