Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2020_5_1_a7, author = {P. A. Shaikhullina}, title = {A realization theorem in the problem of a strict analytical classification of typical germs of semihyperbolic mappings}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {105--113}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a7/} }
TY - JOUR AU - P. A. Shaikhullina TI - A realization theorem in the problem of a strict analytical classification of typical germs of semihyperbolic mappings JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2020 SP - 105 EP - 113 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a7/ LA - en ID - CHFMJ_2020_5_1_a7 ER -
%0 Journal Article %A P. A. Shaikhullina %T A realization theorem in the problem of a strict analytical classification of typical germs of semihyperbolic mappings %J Čelâbinskij fiziko-matematičeskij žurnal %D 2020 %P 105-113 %V 5 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a7/ %G en %F CHFMJ_2020_5_1_a7
P. A. Shaikhullina. A realization theorem in the problem of a strict analytical classification of typical germs of semihyperbolic mappings. Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 1, pp. 105-113. http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a7/
[1] Il'yashenko Yu.S, Yakovenko S.Yu., Analytical theory of differential equations, v. 1, MCCME, Moscow, 2013, 432 pp. (In Russ.) | MR
[2] Birkhoff G.D., Collected Mathematical Papers, v. 1, American Mathematical Society, Providance, 1950
[3] Voronin S.M., “Analytic classification of germs of conformal mappings $(\mathbb{C},0) \to (\mathbb{C},0)$ with identity linear part”, Functional Analysis and Its Applications, 15:1 (1981), 1–13 | DOI | MR | Zbl
[4] Ecalle J., “Sur les fonctions resurgentes I”, Publications Mathematiques d'Orsay, 1981, 1–250 | MR
[5] Il'yashenko Yu.S., “Nonlinear Stokes Phenomena”, Advances in Soviet Mathematics, 1992, 1–51
[6] Voronin S.M., Shaikhullina P.A., “Sectorial normalization of semihyperbolic maps”, Bulletin of Chalyabinsk State University, 2013, no. 28 (319), 94–114 (In Russ.) | MR
[7] Shaikhullina P.A., Voronin S.M., “Functional invariants of germs of semihuperbolic maps”, Chelyabinsk Physical and Mathematical Journal, 2:4 (2017), 447–455 (In Russ.) | MR
[8] Shaikhullina P.A., “Formal classification of typical germs of semihyperbolic maps”, Mathematical Notes of NEFU, 22:4 (2015), 79–90 | Zbl
[9] Stolovitch L., “Family of intersecting totally real manifolds of ($C^n,0$) and germs of holomorphic diffeomorphisms”, Bulletin de la Societe Matematique de France, 143:2 (2015), 247–263 | DOI | MR | Zbl
[10] Ueda T., “Local structure of analytic transformations of two complex variables, I”, Journal of Mathematics of Kyoto Univerdity, 26:2 (1986), 233–261 | DOI | MR | Zbl
[11] Ueda T., “Local structure of analytic transformations of two complex variables, II”, Journal of Mathematics of Kyoto Univerdity, 31:3 (1991), 695–711 | DOI | MR | Zbl
[12] Hermander L., An Introduction to Complex Analysis in Several Variables, North Holland, 1990, 268 pp. | MR
[13] Shabat B.V., Introduction to Complex Analysis, v. II, Functions of several variables, American Mathematical Society, 1992, 371 pp. | MR | Zbl