Mots-clés : anisotropic classes of Lebesgue functions.
@article{CHFMJ_2020_5_1_a1,
author = {L. N. Lyakhov and N. I. Trusova},
title = {Boundedness of operators with partial integrals with the mixed norm. {I}},
journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
pages = {22--31},
year = {2020},
volume = {5},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a1/}
}
TY - JOUR AU - L. N. Lyakhov AU - N. I. Trusova TI - Boundedness of operators with partial integrals with the mixed norm. I JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2020 SP - 22 EP - 31 VL - 5 IS - 1 UR - http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a1/ LA - ru ID - CHFMJ_2020_5_1_a1 ER -
L. N. Lyakhov; N. I. Trusova. Boundedness of operators with partial integrals with the mixed norm. I. Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 1, pp. 22-31. http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a1/
[1] J. M. Appell, A. S. Kalitvin, P. P. Zabrejko, Partial Integral Operators and Integro-Differential Equations, Marcel Dekker, New York, 2000, 560 pp. | MR | Zbl
[2] Lions J.L., Quelques Methodes de Resolution des Problemes aux Limites Non Lineares, Dunod, Paris, 1969 | MR
[3] Besov O.V., Il'in V.P., Nikol'skii S.M., Integral representations of functions and embedding theorems, Nauka Publ., Moscow, 1975, 478 pp. (In Russ.)
[4] Romanovsky V., “Sur une class d'équations intégrales linéaires”, Acta Mathematica, 59 (1932), 99–208 | DOI | MR
[5] Romanovsky V.I., Selected works., v. 2, Theory of probabilities, statistics and analysis, Nauka Publ., Tashkent, 1964, 390 pp. (In Russ.)
[6] Kalitvin A.S., Frolova E.V., Linear equations with partial integrals. $C$-theory, Lipetsk State Pedagogical University, Lipetsk, 2004, 195 pp. (In Russ.)