Boundedness of operators with partial integrals with the mixed norm. I
Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 1, pp. 22-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two types of linear integral operators with partial integrals are considered, which are defined on functions given in a finite rectangle $D=D_1\times D_2$ of the Euclidean point space $\mathbb{R}_2$. Operators of the first type are constructed according to the type of Romanovsky integrals and are studied in the space $C(D_1;L_{p}(D_2))$ norms, space of continuous functions on $\overline{D_1}$ with values in the Lebesgue class $L_p(D_2)$. For general operators, the authors prove that they belong to the class of linear bounded operators from the anisotropic class of functions $L_{p,p^2}$ for $p>1$ to the class of functions with a mixed norm $C (D_1;L_{p}(D_2))$.
Keywords: function with values in a Banach space, partial integral, linear operator with partial integrals, Romanovsky partial integral, anisotropic classes of Lebesgue functions.
@article{CHFMJ_2020_5_1_a1,
     author = {L. N. Lyakhov and N. I. Trusova},
     title = {Boundedness of operators with partial integrals with the mixed norm. {I}},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {22--31},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a1/}
}
TY  - JOUR
AU  - L. N. Lyakhov
AU  - N. I. Trusova
TI  - Boundedness of operators with partial integrals with the mixed norm. I
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2020
SP  - 22
EP  - 31
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a1/
LA  - ru
ID  - CHFMJ_2020_5_1_a1
ER  - 
%0 Journal Article
%A L. N. Lyakhov
%A N. I. Trusova
%T Boundedness of operators with partial integrals with the mixed norm. I
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2020
%P 22-31
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a1/
%G ru
%F CHFMJ_2020_5_1_a1
L. N. Lyakhov; N. I. Trusova. Boundedness of operators with partial integrals with the mixed norm. I. Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 1, pp. 22-31. http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a1/

[1] J. M. Appell, A. S. Kalitvin, P. P. Zabrejko, Partial Integral Operators and Integro-Differential Equations, Marcel Dekker, New York, 2000, 560 pp. | MR | Zbl

[2] Lions J.L., Quelques Methodes de Resolution des Problemes aux Limites Non Lineares, Dunod, Paris, 1969 | MR

[3] Besov O.V., Il'in V.P., Nikol'skii S.M., Integral representations of functions and embedding theorems, Nauka Publ., Moscow, 1975, 478 pp. (In Russ.)

[4] Romanovsky V., “Sur une class d'équations intégrales linéaires”, Acta Mathematica, 59 (1932), 99–208 | DOI | MR

[5] Romanovsky V.I., Selected works., v. 2, Theory of probabilities, statistics and analysis, Nauka Publ., Tashkent, 1964, 390 pp. (In Russ.)

[6] Kalitvin A.S., Frolova E.V., Linear equations with partial integrals. $C$-theory, Lipetsk State Pedagogical University, Lipetsk, 2004, 195 pp. (In Russ.)