Issues of unique solvability and approximate controllability of linear fractional order equations with a H\"olderian right-hand side
Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 1, pp. 5-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

Issues of unique solvability and approximate controllability of linear fractional order evolution equations, both resolved with respect to the Riemann — Liouville fractional derivative (nondegenerate) and containing an irreversible operator at it (degenerate), are investigated. It is assumed that an operator on the right side of a non-degenerate equation or a pair of operators in a degenerate equation generates an analytic in a sector resolving family of operators of the corresponding homogeneous equation. New results on the solvability of inhomogeneous equations of such classes with a Hölder continuous function on the right side are obtained. These results allow us to find criteria for the approximate controllability of a degenerate system in fixed time, in free time, and in the case of systems with finite-dimensional input. The initial state of the degenerate control system is set by the Showalter — Sidorov type conditions. Based on the obtained abstract results, we found a criterion for the approximate controllability of a distributed control system, the dynamics of which is described by the linearized system of Navier — Stokes equations of fractional order in time.
Keywords: fractional Riemann — Liouville derivative, analytic in a sector resolving family of operators, degenerate evolution equation, Hölder condition, approximate controllability.
@article{CHFMJ_2020_5_1_a0,
     author = {A. S. Avilovich and D. M. Gordievskikh and V. E. Fedorov},
     title = {Issues of unique solvability and approximate controllability of linear fractional order equations with a {H\"olderian} right-hand side},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {5--21},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a0/}
}
TY  - JOUR
AU  - A. S. Avilovich
AU  - D. M. Gordievskikh
AU  - V. E. Fedorov
TI  - Issues of unique solvability and approximate controllability of linear fractional order equations with a H\"olderian right-hand side
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2020
SP  - 5
EP  - 21
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a0/
LA  - ru
ID  - CHFMJ_2020_5_1_a0
ER  - 
%0 Journal Article
%A A. S. Avilovich
%A D. M. Gordievskikh
%A V. E. Fedorov
%T Issues of unique solvability and approximate controllability of linear fractional order equations with a H\"olderian right-hand side
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2020
%P 5-21
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a0/
%G ru
%F CHFMJ_2020_5_1_a0
A. S. Avilovich; D. M. Gordievskikh; V. E. Fedorov. Issues of unique solvability and approximate controllability of linear fractional order equations with a H\"olderian right-hand side. Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 1, pp. 5-21. http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a0/

[1] Fedorov V.E., Avilovich A.S., “A Cauchy type problem for a degenerate equation with the Riemann — Liouville derivative in the sectorial case”, Siberian Mathematical Journal, 60:2 (2019), 359–372 | DOI | MR | Zbl

[2] Fedorov V.E., Gordievskikh D.M., Baleanu D., Taş K., “Criterion of the approximate controllability of a class of degenerate distributed systems with the Riemann — Liouville derivative”, Mathematical Notes of NEFU, 26:2 (2019), 41–59 (In Russ.) | MR | Zbl

[3] Fedorov V.E., Ruzakova O.A., “Controllability of linear Sobolev type equations with relatively $p$-radial operators”, Russian Mathematics, 46:7 (2002), 52–55 | MR | Zbl

[4] Fedorov V.E., Ruzakova O.A., “One-dimensional controllability in Hilbert spaces of linear Sobolev type equations”, Differential Equations, 38:8 (2002), 1216–1218 | DOI | MR | Zbl

[5] Fedorov V.E., Ruzakova O.A., “Controllability in dimensions of one and two of Sobolev-type equations in Banach spaces”, Mathematical Notes, 74:4 (2003), 583–592 | DOI | DOI | MR | Zbl

[6] Ruzakova O.A., Fedorov V.E., “On $\varepsilon$-controllability of linear equations, not solved with respect to the derivative, in Banach spaces”, Computational Technologies, 10:5 (2005), 90–102 (In Russ.) | Zbl

[7] Fedorov V.E., Shklyar B., “Exact null controllability of degenerate evolution equations with scalar control”, Sbornik: Mathematics, 203:12 (2012), 1817–1836 | DOI | DOI | MR | Zbl

[8] Plekhanova M.V., Fedorov V.E., Optimal Control for Degenerate Distributed Systems, Publishing Center of South Ural State University, Chelyabinsk, 2013, 174 pp. (In Russ.)

[9] Plekhanova M.V., Fedorov V.E., “On controllability of degenerate distributed systems”, Ufa Mathematical Journal, 6:2 (2014), 77-96 (In Russ.) | MR | Zbl

[10] V. E. Fedorov, D. M. Gordievskikh, G. D. Baybulatova, “Controllability of a class of weakly degenerate fractional order evolution equations”, AIP Conference Proceedings, 1907 (2017), 020009-1–020009-14 | DOI

[11] Fedorov V.E., Gordievskikh D.M., Turov M.M., “Infinite-dimensional and finite-dimensional $\varepsilon$-controllability for a class of fractional order degenerate evolution equations”, Chelyabinsk Physical and Mathematical Journal, 3:1 (2018), 5–26 (In Russ.) | MR

[12] V. E. Fedorov, D. M. Gordievskikh, “Approximate controllability of strongly degenerate fractional order system of distributed control”, 17th IFAC Workshop on Control Applications of Optimization CAO 2018 (Yekaterinburg, Russia, 15–19 October 2018), IFAC-PapersOnLine, 51, no. 32, 2018, 675–680 | DOI

[13] D. Baleanu, V. E. Fedorov, D. M. Gordievskikh, K. Tas, “Approximate controllability of infinite-dimensional degenerate fractional order systems in the sectorial case”, Mathematics, 7:735 (2019), 15 | Zbl

[14] E. G. Bajlekova, Fractional Evolution Equations in Banach Spaces, PhD thesis, Eindhoven University of Technology, University Press Facilities, Eindhoven, 2001, 107 pp. | MR | Zbl

[15] J. Prüss, Evolutionary Integral Equations and Applications, Springer, Basel, 1993, 366 pp. | MR

[16] M. Z. Solomyak, “Applications of the theory of semigroups to the study of differential equations in Banach spaces”, Doklady Mathematics, 122:5 (1958), 766–769 | MR | Zbl

[17] Yosida K., Functional Analysis, Springer-Verl., Berlin, 1965, 458 pp. | MR | Zbl

[18] (In Russ.)

[19] V. E. Fedorov, “A class of fractional order semilinear evolutions in Banach spaces”, Integral Equations and Their Applications. Proceeding of University Network Seminar on the occasion of The Third Mongolia — Russia — Vietnam Workshop on NSIDE 2018, Hanoi Mathematical Society, Hung Yen University of Technology and Education, Hung Yen, 2018, 11–20 | MR

[20] V. E. Fedorov, A. S. Avilovich, L. V. Borel, “Initial problems for semilinear degenerate evolution equations of fractional order in the sectorial case”, Springer Proceedings in Mathematics and Statistics, 292 (2019), 41–62 | DOI | MR

[21] (In Russ.) | Zbl

[22] (In Russ.) | Zbl

[23] (In Russ.)