Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2019_4_4_a7, author = {M. Kosti\'c}, title = {Entire and analytical solutions of abstract degenerate fractional}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {445--460}, publisher = {mathdoc}, volume = {4}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_4_a7/} }
M. Kostić. Entire and analytical solutions of abstract degenerate fractional. Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 4, pp. 445-460. http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_4_a7/
[1] J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser-Verlag Publ., Basel, 1993
[2] S. G. Samko, A. A. Kilbas, O. I. Marichev O.I., Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York, 1993, 1006 pp. | MR | Zbl
[3] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999, 340 pp. | MR | Zbl
[4] K. Diethelm, The Analysis of Fractional Differential Equations, Springer-Verlag, Berlin, 2010, 166 pp. | MR | Zbl
[5] A. A. Kilbas, H. M. Srivastava , J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Science B.V., Amsterdam, 2006, 540 pp. | MR
[6] K. Diethelm, The Analysis of Fractional Differential Equations, Springer-Verlag, Berlin, 2010, 166 pp. | MR | Zbl
[7] M. Kostić, Generalized Semigroups and Cosine Functions, Mathematical Institute SANU Publ., Belgrade, 2011 | MR | Zbl
[8] M. Kostić, Abstract Volterra Integro-Differential Equations, Taylor and Francis Group/CRC Press/Science Publ., Boca Raton, New York, 2015, 458 pp. | MR
[9] Fedorov V.E., Debbouche A., “A class of degenerate fractional evolution systems in Banach spaces”, Differential Equations, 49:12 (2013), 1569–1576 | DOI
[10] Resolving operators of degenerate evolution equations with fractional derivative with respect to time, “Fedorov V.E., Gordievskikh D.M.”, Russian Mathematics, 59:1 (2015), 60–70 | DOI
[11] M. Kostić, “Degenerate $k$-regularized $(C_1;C_2)$-existence and uniqueness families”, CUBO, 17:03 (2015), 15–41 | DOI
[12] Degenerate fractional evolution equations in locally convex spaces, “Fedorov V.E., Kostić M.”, Ufa Mathematical Journal, 8 (2016), 100–113
[13] Kostić M., “Abstract degenerate multi-term fractional differential equations with Riemann — Liouville fractional derivatives”, Bulletin, Classe des Sciences Mathematiques et Naturelles, Sciences mathematiques, 41 (2016), 1–20
[14] Kostić M., “Degenerate multi-term fractional differential equations in locally convex spaces”, Publications de l’Institut Mathematique, 100:114 (2016), 49–75 | DOI
[15] Kostić M., “Degenerate abstract Volterra equations in locally convex spaces”, Filomat, 1:3 (2017), 597–616 | DOI
[16] R. W. Carroll, R. E. Showalter, Singular and Degenerate Cauchy Problems, Academic Press Publ., New York, 1976 | MR
[17] A. Favini, A. Yagi, Degenerate Differential Equations in Banach Spaces, Chapman and Hall/CRC Pure and Applied Mathematics Publ., New York, 1998, 324 pp. | MR
[18] I. V. Melnikova, A. I. Filinkov, Abstract Cauchy Problems: Three Approaches, Chapman and Hall/CRC Publ., Boca Raton, 2001 | MR | Zbl
[19] T.-J. Xiao , J. Liang, “Abstract degenerate Cauchy problems in locally convex spaces”, Journal of Mathematical Analysis and Applications, 259 (2001), 398–412 | DOI | MR | Zbl
[20] G. V. Demidenko, S. V. Uspenskii, Partial Differential Equations And Systems Not Solvable With Respect To The Highest-Order Derivative, Pure and Applied Mathematics, 256, CRC Press Publ., New York, 2003 | MR
[21] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, Inverse and Ill-Posed Problems, 42, VSP Publ., Utrecht–Boston, 2003 | MR
[22] T.-J. Xiao , J. Liang, “Higher order degenerate Cauchy problems in locally convex spaces”, Mathematical and Computer Modelling, 41 (2005), 837–847 | DOI | MR | Zbl
[23] Sviridyuk G.A., Zamyshlyaeva A.A., “The phase spaces of a class of higher-order linear equations of Sobolev type”, Differential Equations, 42:2 (2006), 269–278 | DOI
[24] Aliev A.R., Elbably A.L., “Well-posedness of a boundary value problem for a class of third-order operator-differential equations”, Boundary Value Problems, 2013:140 (2013)
[25] DeLaubenfels R., Existence Families, Functional Calculi and Evolution Equations, Lecture Notes in Mathematics, no. 1570, Springer, New York, 1994, 200 pp. | DOI
[26] Autret L., “Entire vectors and time reversibility of Cauchy problems”, Semigroup Forum, 46:1 (1993), 347–351 | DOI
[27] Autret L., Emamirad H.A., “Entire propagator”, Proceedings of American Mathematical Society, 120:4 (1994), 1151–1158 | DOI
[28] Xiao T.-J., Liang J., “Entire solutions of higher-order abstract Cauchy problems”, Journal of Mathematical Analysis and Applications, 208:2 (1997), 298–310 | DOI
[29] On analytic structure of solutions to higher order abstract Cauchy problems, “Mishura Y., Tomilov Y.”, Proceedings of American Mathematical Society, 126:5 (1998), 1363–1370 | DOI
[30] M. Kostić, “Abstract Volterra equations in locally convex spaces”, Science China Mathematics, 55 (2012), 1797–1825 | DOI | MR | Zbl
[31] M. Kostić, “Abstract time-fractional equations: existence and growth of solutions”, Fractional Calculus and Applied Analysis, 14:2 (2011), 301–316
[32] M. Kostić, “Systems of abstract time-fractional equations”, Publications de l’Institut Mathematique, 95:109 (2014), 119–132 | DOI
[33] Fedorov V.E., M. Kostić, “On a class of abstract degenerate multi-term fractional differential equations in locally convex spaces”, Eurasian Mathematical Journal, 9 (2018), 33–57 | DOI
[34] Xiao T.-J., Liang J., The Cauchy Problem for Higher–Order Abstract Differential Equations, Springer-Verlag, Berlin, 1998