The Cauchy problem for a semilinear
Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 4, pp. 439-444.

Voir la notice de l'article provenant de la source Math-Net.Ru

A semilinear equation of distributed order (with the Gerasimov — Caputo derivative) in a Banach space with a bounded operator at the unknown function is considered. Using previously obtained results on the solvability of the Cauchy problem for the corresponding linear inhomogeneous equation of distributed order, the found operator form of its solution, and the contraction mapping theorem, the local unique solvability of the Cauchy problem for the considered semilinear equation is proved. An example of applying the obtained abstract results is given.
Keywords: the Gerasimov — Caputo fractional derivative, distributed order derivative, semilinear equation, the existence and the uniquenes of a solution, local solution.
@article{CHFMJ_2019_4_4_a6,
     author = {V. E. Fedorov and D. M. Gordievskikh},
     title = {The {Cauchy} problem for a semilinear},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {439--444},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_4_a6/}
}
TY  - JOUR
AU  - V. E. Fedorov
AU  - D. M. Gordievskikh
TI  - The Cauchy problem for a semilinear
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2019
SP  - 439
EP  - 444
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_4_a6/
LA  - ru
ID  - CHFMJ_2019_4_4_a6
ER  - 
%0 Journal Article
%A V. E. Fedorov
%A D. M. Gordievskikh
%T The Cauchy problem for a semilinear
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2019
%P 439-444
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_4_a6/
%G ru
%F CHFMJ_2019_4_4_a6
V. E. Fedorov; D. M. Gordievskikh. The Cauchy problem for a semilinear. Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 4, pp. 439-444. http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_4_a6/

[1] Nakhushev A.M., “On continual differential equations and their difference analogues”, Reports of Academy of Sciences, 300:4 (1988), 796– 799 (In Russ.)

[2] Pskhu A.V., Partial differential equations of fractional order, Nauka Publ., Moscow, 2005, 199 pp.

[3] M. Caputo, “Mean fractional order derivatives. Differential equations and filters”, Annali dell’Universita di Ferrara. Sezione VII. Scienze Matematiche, XLI (1995), 73–84

[4] Kochubei, A. N., “Distributed order calculus and equations of ultraslow diffusion”, Journal of Mathematical Analysis and Applications, 340 (2008), 252–280 | DOI

[5] S. Umarov, R. Gorenflo, “Cauchy and nonlocal multi-point problems for distributed order pseudodifferential equations”, Zeitschrift für Analysis und ihre Anwendungen, 24 (2005), 449–466

[6] Streletskaya E.M., Fedorov V.E., Debbouche A., “The Cauchy problem for distributed order equations in Banach spaces”, Mathematical Notes of NEFU, 25:1 (2018), 63–72

[7] V. E. Fedorov, E. M. Streletskaya, “Initial-value problems for linear distributed-order differential equations in Banach spaces”, Electronic Journal of Differential Equations, 2018:176 (2018), 1–17