Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2019_4_4_a5, author = {A. S. Sushkov}, title = {Control of the rod heating process in moving environment}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {427--438}, publisher = {mathdoc}, volume = {4}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_4_a5/} }
A. S. Sushkov. Control of the rod heating process in moving environment. Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 4, pp. 427-438. http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_4_a5/
[1] OsipovYu.S., “Position control in parabolic systems”, Journal of Applied Mathematics and Mechanics, 41:2 (1977), 187–193
[2] Egorov A.I., Optimal control of thermal and diffusion processes, Nauka Publ., Moscow, 1978, 464 pp. (In Russ.)
[3] Korotkii A.I., OsipovYu.S., “Approximation in problems of position control of parabolic systems”, Journal of Applied Mathematics and Mechanics, 42:4 (1978), 631–637 | DOI
[4] Vasil’ev F.P., Methods for solving extremal problems, Nauka Publ., Moscow, 1981, 400 pp. (In Russ.)
[5] V. I. Ukhobotov, I. V. Izmest’ev, “The problem of controlling the process of heating the rod in the presence of disturbance and uncertainty”, IFAC PapersOnLine, 51:32 (2018), 739–742 | DOI
[6] Ukhobotov V.I., Izmest’ev I.V., “A control problem for a rod heating process with unknown temperature at the right end and unknown density of the heat source”, Proceedings of Institute of Mathematics and Mechanics of Ural Branch of RAS, 25, no. 1 (2019), 297–305 (In Russ.)
[7] Samarskii A.A., The theory of difference schemes, Nauka Publ., Moscow, 1989, 616 pp. (In Russ.)
[8] Polyanin A.D., Handbook of mathematical physics linear equations, Fizmatlit Publ., Moscow, 2001, 576 pp. (In Russ.)
[9] Tikhonov A.N., Samarskiy A.A., Equations of mathematical physics, Nauka Publ., Moscow, 1977, 735 pp. (In Russ.)
[10] Daugavet, I.K., Theory of approximate methods. Linear equations, BKhV Publ., 2006, 278 pp. (In Russ.)
[11] Kulkov S.S. , Reshenie differentsialnykh uravnenii parabolicheskogo tipa, soderzhaschikh proizvodnuyu po koordinate pervogo poryadka (data obrascheniya: 02.10.2019) http://ict.muctr.ru/html2/6/lek6_3_1.html
[12] Choosing between C ++ and C Sharp (accessed 02.10.2019.) https://habrahabr.ru/post/262461
[13] InteractiveDataDisplay for WPF (data obrascheniya: 18.04.2019) https://github.com/Microsoft/InteractiveDataDisplay.WPF
[14] OpenGL (data obrascheniya: 02.10.2019) https://opengl.org
[15] Godunov S.K., Solving linear equation systems, Nauka Publ., Novosibirsk, 1980, 177 pp. (In Russ.)