Control of the rod heating process in moving environment
Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 4, pp. 427-438.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article proposes a numerical method for solving the problem of controlling the process of heating a rod in moving environment with volume heat formation. The controlled parameter is the temperature at the left end of the rod. When constructing the control function, the approach is used, which is described in the works of V.I. Ukhobotov and I.V. Izmest‘ev. In this paper, special attention is paid to the development of a numerical method for solving the problem, as well as its software implementation. The approximation of the control problem is made using an implicit difference scheme. A program has been developed that allows one to obtain and visualize an approximate solution to the considered problem, as well as to build a control function. The performance of the program is verified on one example.
Keywords: heat-conduction equation, temperature, control, difference scheme, approximation.
@article{CHFMJ_2019_4_4_a5,
     author = {A. S. Sushkov},
     title = {Control of the rod heating process in moving environment},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {427--438},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_4_a5/}
}
TY  - JOUR
AU  - A. S. Sushkov
TI  - Control of the rod heating process in moving environment
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2019
SP  - 427
EP  - 438
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_4_a5/
LA  - ru
ID  - CHFMJ_2019_4_4_a5
ER  - 
%0 Journal Article
%A A. S. Sushkov
%T Control of the rod heating process in moving environment
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2019
%P 427-438
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_4_a5/
%G ru
%F CHFMJ_2019_4_4_a5
A. S. Sushkov. Control of the rod heating process in moving environment. Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 4, pp. 427-438. http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_4_a5/

[1] OsipovYu.S., “Position control in parabolic systems”, Journal of Applied Mathematics and Mechanics, 41:2 (1977), 187–193

[2] Egorov A.I., Optimal control of thermal and diffusion processes, Nauka Publ., Moscow, 1978, 464 pp. (In Russ.)

[3] Korotkii A.I., OsipovYu.S., “Approximation in problems of position control of parabolic systems”, Journal of Applied Mathematics and Mechanics, 42:4 (1978), 631–637 | DOI

[4] Vasil’ev F.P., Methods for solving extremal problems, Nauka Publ., Moscow, 1981, 400 pp. (In Russ.)

[5] V. I. Ukhobotov, I. V. Izmest’ev, “The problem of controlling the process of heating the rod in the presence of disturbance and uncertainty”, IFAC PapersOnLine, 51:32 (2018), 739–742 | DOI

[6] Ukhobotov V.I., Izmest’ev I.V., “A control problem for a rod heating process with unknown temperature at the right end and unknown density of the heat source”, Proceedings of Institute of Mathematics and Mechanics of Ural Branch of RAS, 25, no. 1 (2019), 297–305 (In Russ.)

[7] Samarskii A.A., The theory of difference schemes, Nauka Publ., Moscow, 1989, 616 pp. (In Russ.)

[8] Polyanin A.D., Handbook of mathematical physics linear equations, Fizmatlit Publ., Moscow, 2001, 576 pp. (In Russ.)

[9] Tikhonov A.N., Samarskiy A.A., Equations of mathematical physics, Nauka Publ., Moscow, 1977, 735 pp. (In Russ.)

[10] Daugavet, I.K., Theory of approximate methods. Linear equations, BKhV Publ., 2006, 278 pp. (In Russ.)

[11] Kulkov S.S. , Reshenie differentsialnykh uravnenii parabolicheskogo tipa, soderzhaschikh proizvodnuyu po koordinate pervogo poryadka (data obrascheniya: 02.10.2019) http://ict.muctr.ru/html2/6/lek6_3_1.html

[12] Choosing between C ++ and C Sharp (accessed 02.10.2019.) https://habrahabr.ru/post/262461

[13] InteractiveDataDisplay for WPF (data obrascheniya: 18.04.2019) https://github.com/Microsoft/InteractiveDataDisplay.WPF

[14] OpenGL (data obrascheniya: 02.10.2019) https://opengl.org

[15] Godunov S.K., Solving linear equation systems, Nauka Publ., Novosibirsk, 1980, 177 pp. (In Russ.)