On nonstationary
Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 4, pp. 419-426.

Voir la notice de l'article provenant de la source Math-Net.Ru

A system of a point material particle and a field described by the nonlinear 3D Klein – Gordon equation is considered. The particle creates nonuniformity of the field and interacts with it. It is showed that when taking into account relativistic effects, if the particle small in comparison with the parameters of nonuniformity of the rest mass, a stable minimum of energy at zero velocity is impossible. Such a behavior is of interest from the point of view of soliton models construction of particles with an intrinsic non-zero moment or soliton models of particles with the oscillating mass.
Keywords: soliton, nonlinear wave equation, relativistic effect.
@article{CHFMJ_2019_4_4_a4,
     author = {R. K. Salimov and E. G. Ekomasov and A. M. Gumerov},
     title = {On nonstationary},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {419--426},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_4_a4/}
}
TY  - JOUR
AU  - R. K. Salimov
AU  - E. G. Ekomasov
AU  - A. M. Gumerov
TI  - On nonstationary
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2019
SP  - 419
EP  - 426
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_4_a4/
LA  - ru
ID  - CHFMJ_2019_4_4_a4
ER  - 
%0 Journal Article
%A R. K. Salimov
%A E. G. Ekomasov
%A A. M. Gumerov
%T On nonstationary
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2019
%P 419-426
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_4_a4/
%G ru
%F CHFMJ_2019_4_4_a4
R. K. Salimov; E. G. Ekomasov; A. M. Gumerov. On nonstationary. Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 4, pp. 419-426. http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_4_a4/

[1] A. Scott, Encyclopedia of Nonlinear Science, ed. Scott, A., Routledge, New York, 2006, 1104 pp.

[2] J. Cuevas-Maraver, P. G. Kevrekidis, F. Williams, The sine-Gordon Model and Its Applications: From Pendula and Josephson Junctions to Gravity and High-Energy Physics, Springer, Cham, 2014, 263 pp.

[3] Th. Dauxois, M.Peyrard, Physics of Solitons, Cambridge University Press, Cambridge, 2010, 436 pp.

[4] O. M. Braun, Yu. S. Kivshar, The Frenkel – Kontorova Model: Concepts, Methods, and Applications, Springer, Berlin, 2004, 472 pp.

[5] E. G. Ekomasov, A. M. Gumerov, R. V. Kudryavtsev, “On the possibility of the observation of the resonance interaction between kinks of the sine-Gordon equation and localized waves in real physical systems”, JETP Letters, 101:12 (2015), 835–839 | DOI

[6] Shamsutdinov M.A., Nazarov V.N., Lomakina I.Yu., Ferro- and Antiferromagnetodynamics. Nonlinear Oscillations, Waves and Solitons, Nauka Publ.,, Moscow, 2009, 452 pp. (In Russ.)

[7] E. G. Ekomasov, A. M. Gumerov, R. V. Kudryavtsev, “Resonance dynamics of kinks in the sine-Gordon model with impurity, external force and damping”, Journal of Computational and Applied Mathematics, 312 (2017), 198–208 | DOI

[8] J. A. González, A. Bellorín, M. A. Garcá- Ñ ustes et al., “Arbitrarily large numbers of kink internal modes in inhomogeneous sine-Gordon equations”, Physics Letters A., 381:24 (2017), 1995–1998 | DOI

[9] E. G. Ekomasov, A. M.Gumerov, R. V. Kudryavtsev et al., “Multisoliton dynamics in the sine-Gordon model with two point impurities”, Brazilian Journal of Physics, 48:6 (2018), 576–584 | DOI

[10] D. Saadatmand, S. V. Dmitriev, D. I. Borisov, P. C. Kevrekidis, “Interaction of sine-Gordon kinks and breathers with a parity-time-symmetric defect”, Physical Review E., 90:5 (2014), 052902 | DOI

[11] E. G. Ekomasov, R. R. Murtazin, V. N. Nazarov, “Excitation of magnetic inhomogeneities in three-layer ferromagnetic structure with different parameters of the magnetic anisotropy and exchange”, Journal of Magnetism and Magnetic Materials, 385 (2015), 217–221 | DOI

[12] E. G. Ekomasov, R. R. Murtazin, Sh. A. Azamatov, A. E. Ekomasov, “Nucleation and evolution of magnetic inhomogeneities of the pulson and 2D soliton type in magnets with local anisotropy inhomogeneities”, Physics of Metals and Metallography, 112:3 (2011), 213–223 | DOI

[13] E. G. Ekomasov, S. A. Azamatov, R. R. Murtazin, “Excitation of nonlinear solitary flexural waves in a moving domain wall”, Physics of Metals and Metallography, 108:6 (2009), 532–537 | DOI

[14] E. G. Ekomasov, A. M. Gumerov, R. R.Murtazin, “Interaction of sine-Gordon solitons in the model with attracting impurities”, Mathematical Methods in the Applied Sciences, 40:17 (2017), 6178–6186 | DOI

[15] Musienko A.I., Manevich L.I., “Classical mechanical analogs of relativistic effects”, Physics-Uspekhi, 47:8 (2004), 797–820 | DOI | DOI

[16] R. K. Salimov, “On nonstationary inhomogeneities of the nonlinear Klein – Gordon equation”, JETP Letters, 109:7 (2019), 490–493 | DOI