Coordinate-free recording
Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 4, pp. 412-418.

Voir la notice de l'article provenant de la source Math-Net.Ru

The metrics of most geometries of maximum mobility can be written in the coordinateless form. In this paper, we consider some Helmholtz planes, which are geometries of maximum local mobility, whose coordinateless recording was unknown. Implicitly defined functions are found to construct such a record.
Keywords: two-dimensional geometries, geometry of maximum mobility, group of transformations, Helmholtz planes, metric function.
@article{CHFMJ_2019_4_4_a3,
     author = {G. G. Mikhailichenko and A. A. Simonov},
     title = {Coordinate-free recording},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {412--418},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_4_a3/}
}
TY  - JOUR
AU  - G. G. Mikhailichenko
AU  - A. A. Simonov
TI  - Coordinate-free recording
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2019
SP  - 412
EP  - 418
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_4_a3/
LA  - ru
ID  - CHFMJ_2019_4_4_a3
ER  - 
%0 Journal Article
%A G. G. Mikhailichenko
%A A. A. Simonov
%T Coordinate-free recording
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2019
%P 412-418
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_4_a3/
%G ru
%F CHFMJ_2019_4_4_a3
G. G. Mikhailichenko; A. A. Simonov. Coordinate-free recording. Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 4, pp. 412-418. http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_4_a3/

[1] Helmholtz H., “On facts underlying geometry”, On the grounds of the geometry, Moscow, 1956, 529 (In Russ.)

[2] Mikhailichenko G.G., “Two-dimensional geometries”, Reports of the USSR Academy of Sciences, 24:2 (1981), 346–348 (In Russ.)

[3] Mikhailichenko G.G., Two-dimensional geometries, Barnaul State Pedagogical University, Barnaul, 2004, 132 pp. (In Russ.)

[4] Kyrov V.A., “Two-dimensional Helmholtz spaces”, Siberian Mathematical Journal, 46:6 (2005), 1082–1096 | DOI