Coordinate-free recording
Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 4, pp. 412-418
Cet article a éte moissonné depuis la source Math-Net.Ru
The metrics of most geometries of maximum mobility can be written in the coordinateless form. In this paper, we consider some Helmholtz planes, which are geometries of maximum local mobility, whose coordinateless recording was unknown. Implicitly defined functions are found to construct such a record.
Keywords:
two-dimensional geometries, geometry of maximum mobility, Helmholtz planes, metric function.
Mots-clés : group of transformations
Mots-clés : group of transformations
@article{CHFMJ_2019_4_4_a3,
author = {G. G. Mikhailichenko and A. A. Simonov},
title = {Coordinate-free recording},
journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
pages = {412--418},
year = {2019},
volume = {4},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_4_a3/}
}
G. G. Mikhailichenko; A. A. Simonov. Coordinate-free recording. Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 4, pp. 412-418. http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_4_a3/
[1] Helmholtz H., “On facts underlying geometry”, On the grounds of the geometry, Moscow, 1956, 529 (In Russ.)
[2] Mikhailichenko G.G., “Two-dimensional geometries”, Reports of the USSR Academy of Sciences, 24:2 (1981), 346–348 (In Russ.)
[3] Mikhailichenko G.G., Two-dimensional geometries, Barnaul State Pedagogical University, Barnaul, 2004, 132 pp. (In Russ.)
[4] Kyrov V.A., “Two-dimensional Helmholtz spaces”, Siberian Mathematical Journal, 46:6 (2005), 1082–1096 | DOI