An approximate calculation
Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 4, pp. 398-411.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the problem of distinguishing between the center and the focus for the case of a complex monodromic singular point under certain general conditions, the coefficients of the asymptotic representation of the monodromy transformation are expressed in terms of the Hadamard integrals of the functions arising from the systems of equations in variations corresponding to the edges of the Newton diagram. The integrands in these integrals are very complex, and even numerical finding the integrals from them is almost impossible. A method is proposed for calculating this kind of Hadamard integrals by solving some special systems of differential equations. The algorithm is implemented in the Maple system. A numerical example is given.
Keywords: integral of Hadamard, monodromic singular point, monodromy map, correspondence map, Newton diagram, asymptotic expansion, equations in variations.
@article{CHFMJ_2019_4_4_a2,
     author = {N. B. Medvedeva and V. A. Viktorova},
     title = {An approximate calculation},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {398--411},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_4_a2/}
}
TY  - JOUR
AU  - N. B. Medvedeva
AU  - V. A. Viktorova
TI  - An approximate calculation
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2019
SP  - 398
EP  - 411
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_4_a2/
LA  - ru
ID  - CHFMJ_2019_4_4_a2
ER  - 
%0 Journal Article
%A N. B. Medvedeva
%A V. A. Viktorova
%T An approximate calculation
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2019
%P 398-411
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_4_a2/
%G ru
%F CHFMJ_2019_4_4_a2
N. B. Medvedeva; V. A. Viktorova. An approximate calculation. Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 4, pp. 398-411. http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_4_a2/

[1] Medvedeva N.B., “Asymptotic expansion of the monodromy map”, Chelyabinsk Physical and Mathematical Journal, 1:1 (2016), 56–72 (In Russ.)

[2] Hadamard J., Lectures on Cauchy’s Problem in Linear Partial Differential Equations, Dover Publ., Mineola, New York, 2003, 309 pp.

[3] Medvedeva N.B., “On the analytic solvability of the problem of distinguishing between center and focus”, Proceedings of the Steklov Institute of Mathematics, 254, no. 1, 2006, 7–93 | DOI

[4] Medvedeva N.B., “On analytic insolubility of the stability problem on the plane”, Russian Mathematical Surveys, 68:5 (2013), 923–949 | DOI | DOI

[5] Medvedeva N.B., Mazaeva E.V., “A sufficient condition for a focus for a monodromic singular point”, Transactions of the Moscow Mathematical Society, 63, 2002, 77–103

[6] Berezovskaya F.S., Medvedeva N.B., “Monodromy transformation asymptotics of a singular point with a fixed Newton diagram”, Transactions of I.G.Petrovskiy Workshop, 15 (1991), 156–177 (In Russ.)

[7] Arnol’d,V.I., “Ordinary differential equations — 1”, Results of science and technology. Contemporary problems of mathematics. Fundamental directions, 1 (1985), 7–149 (In Russ.)

[8] Medvedeva N.B., “Monodromy criterion for a singular point of a vector field in the plane”, St. Petersburg Mathematical Journal, 13:2 (2002), 253–268