Algorithms for solving the velocity problem
Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 4, pp. 387-397.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the performance control problem with a piecewise constant dynamics and a non-convex target set with a smooth boundary. A non-smooth solution to the problem is formed on the basis of the constructions of the theory of mathematical control and the principles of geometric optics. Statements are proved that reveal the geometry of singular curves, as well as their differential properties. Algorithms for constructing a singular set and an optimal result function are proposed and implemented. The effectiveness of the algorithms is illustrated by the results of the software package.
Keywords: optimal control, velocity, dispersing curve, plane-layered medium, optimal result function, Snelius law.
@article{CHFMJ_2019_4_4_a1,
     author = {P. D. Lebedev and A. A. Uspenskii},
     title = {Algorithms for solving the velocity problem},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {387--397},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_4_a1/}
}
TY  - JOUR
AU  - P. D. Lebedev
AU  - A. A. Uspenskii
TI  - Algorithms for solving the velocity problem
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2019
SP  - 387
EP  - 397
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_4_a1/
LA  - ru
ID  - CHFMJ_2019_4_4_a1
ER  - 
%0 Journal Article
%A P. D. Lebedev
%A A. A. Uspenskii
%T Algorithms for solving the velocity problem
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2019
%P 387-397
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_4_a1/
%G ru
%F CHFMJ_2019_4_4_a1
P. D. Lebedev; A. A. Uspenskii. Algorithms for solving the velocity problem. Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 4, pp. 387-397. http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_4_a1/

[1] Subbotin A.I., Generalized Solutions of First Order PDEs: the Dynamical Optimization Perspective, Birkhäuser, Boston, 1995, xii+314 pp.

[2] Isaacs R., Differential Games, John Wiley and Sons, New York, 1965, 384 pp.

[3] KravtsovYu.A., OrlovYu.I., Geometric optics of inhomogeneous media, Nauka Publ., Moscow, 1980, 306 pp. (In Russ.)

[4] Kruzhkov S.N., “Generalized solutions of the Hamilton – Jacobi equations of eikonal type. I”, Mathematics of the USSR – Sbornik, 27:3 (1975), 406–446 | DOI

[5] LebedevP.D., Lempert A.A., “Iterative algorithms for optimal packing construction in inhomogeneous metrics”, Proceedings of the International Youth School-Conference sSoProMat-2017 (Yekaterinburg, Russia, 06 February, 2017), eds. A.A. Makhnev, S.F. Pravdin, 2017 , 98–108 (accepted 20.09.2019) http://ceur-ws.org

[6] Arnold V.I., Singularities of Caustics and Wave Fronts, Springer- Science+Business Media, Dordrecht, 1990, xiii+259 pp.

[7] Ushakov V.N., Uspenskii A.A., LebedevP.D., “Construction of a minimax solution for an eikonaltype equation”, Proceedings of the Steklov Institute of Mathematics, 263, no. 2, 2008, 191–201 | DOI

[8] Ushakov V.N., Uspenskii A.A., LebedevP.D., “Geometry of singular curves for a class of velocity problems”, Bulletin of Saint-Petersburg University. Ser. 10. Applied mathamtics. Informatics. Control Processes, 2013, no. 3, 157–167 (In Russ.)

[9] LebedevP.D., Uspenskii A.A., Program for constructing wave fronts and the function of the Euclidean distance to a compact nonconvex set, Certificate of state registration of the computer program, 2017, no. 2017662074, October 27, 2017 (In Russ.)

[10] LebedevP.D., Uspenskii A.A, “Construction of the optimal result function and dispersing lines in timeoptimality problems with a nonconvex target set”, Proceedings of the Istitute of Mathematics and Mechanics, 22, no. 2, 2016, 188–198 (In Russ.)

[11] RashevskiiP.K., A Course in Differential Geometry, URSS, Moscow, 2009, 432 pp. (In Russ.)

[12] Lebedev P.D., Uspenskii A.A., “Construction of a nonsmooth solution in a time-optimal problem with a low order of the boundary smoothness of the target set”, Proceedings of the Istitute of Mathematics and Mechanics, 25, no. 1, 2019, 108–119 (In Russ.)