Periodic solutions existence for a second order differential equation with a discontinuous nonlinearity
Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 3, pp. 323-332

Voir la notice de l'article provenant de la source Math-Net.Ru

An existence theorem is obtained for a periodic solution of an ordinary second order differential equation with discontinuous nonlinearity in the resonance case. The solutions are considered in the sense of differential inclusion. It is assumed that the non-linearity is of Borel (mod 0) and is bounded. At infinity, it satisfies the one-dimensional analogue of the Landesman — Laser condition for resonant elliptic boundary value problems. The operator statement of the problem under consideration leads to the problem of the existence of fixed points in a multi-valued compact map. To describe the convexity of Nemytskiy operator generated by nonlinearity, the results of M.A. Krasnoselsky and A.V. Pokrovsky are used. The presence of a fixed point is established using the multi-valued version of the Leray — Schauder method.
Keywords: second order differential equation, discontinuous nonlinearity, periodic solution, topological degree.
@article{CHFMJ_2019_4_3_a4,
     author = {V. N. Pavlenko and A. A. Asryan},
     title = {Periodic solutions existence for a second order differential equation with a discontinuous nonlinearity},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {323--332},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_3_a4/}
}
TY  - JOUR
AU  - V. N. Pavlenko
AU  - A. A. Asryan
TI  - Periodic solutions existence for a second order differential equation with a discontinuous nonlinearity
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2019
SP  - 323
EP  - 332
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_3_a4/
LA  - ru
ID  - CHFMJ_2019_4_3_a4
ER  - 
%0 Journal Article
%A V. N. Pavlenko
%A A. A. Asryan
%T Periodic solutions existence for a second order differential equation with a discontinuous nonlinearity
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2019
%P 323-332
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_3_a4/
%G ru
%F CHFMJ_2019_4_3_a4
V. N. Pavlenko; A. A. Asryan. Periodic solutions existence for a second order differential equation with a discontinuous nonlinearity. Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 3, pp. 323-332. http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_3_a4/