Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2019_4_3_a4, author = {V. N. Pavlenko and A. A. Asryan}, title = {Periodic solutions existence for a second order differential equation with a discontinuous nonlinearity}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {323--332}, publisher = {mathdoc}, volume = {4}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_3_a4/} }
TY - JOUR AU - V. N. Pavlenko AU - A. A. Asryan TI - Periodic solutions existence for a second order differential equation with a discontinuous nonlinearity JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2019 SP - 323 EP - 332 VL - 4 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_3_a4/ LA - ru ID - CHFMJ_2019_4_3_a4 ER -
%0 Journal Article %A V. N. Pavlenko %A A. A. Asryan %T Periodic solutions existence for a second order differential equation with a discontinuous nonlinearity %J Čelâbinskij fiziko-matematičeskij žurnal %D 2019 %P 323-332 %V 4 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_3_a4/ %G ru %F CHFMJ_2019_4_3_a4
V. N. Pavlenko; A. A. Asryan. Periodic solutions existence for a second order differential equation with a discontinuous nonlinearity. Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 3, pp. 323-332. http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_3_a4/
[1] Krasnosel'skii M.A., Pokrovsky A.V., Systems with hysteresis, Nauka Publ., Moscow, 1983, 448 pp. (In Russ.) | MR
[2] Shragin I.V., “Conditions for the measurability of superpositions”, Reports of USSR Academy of Science, 197:2 (1971), 295–298 (In Russ.) | MR | Zbl
[3] E. M. Landesman, A. C. Lazer, “Nonlinear perturbations of linear e11iptic boundary value problems at resonance”, Journal of Mathematics and Mechanics, 19:7 (1970), 609–623 | MR | Zbl
[4] I. Rachunkova, M. Tvrdy, I. Vrkoc, “Existence of nonnegative and nonpositive solutions for second order periodic boundary value problems”, Journal of Differential equations, 176 (2001), 445–469 | DOI | MR | Zbl
[5] P. Torres, “Weak singularities may help periodic solutions to exist”, Journal of Differential equations, 232 (2007), 277–284 | DOI | MR | Zbl
[6] P. Torres, “Existence of one-signed periodic solutions of some second-order differential equation via a Krasnoselskii fixed point theorem”, Journal of Differential equation, 190 (2003), 643–662 | DOI | MR | Zbl
[7] M. A. Krasnoselsii, Positive Solutions of Operator Equations, P. Noordhoff Ltd., Groningen, 1964, 381 pp. | MR
[8] M. Filippakis, N. Papageorgion, V. Staicu, “Positive solutions for nonlinear periodic problems”, Positivity, 12 (2008), 433–750 | DOI | MR
[9] Y. Wang, Y. Ru, “On positive periodic solutions of second order singular equations”, Boundary Value Problems, 114 (2018), 1–10 | MR | Zbl
[10] D. Guo, V. Lakshmicantham, Nonlinear Problems in Abstract Cones, Academic Press, New York, 1988, 275 pp. | MR | Zbl
[11] Galikhanov I.F., Pavlenko V.N., “Periodic solutions of the telegraph equation with a discontinuous nonlinearity”, Ufa Mathematical Journal, 4:2 (2012), 74–79 | MR
[12] Pavlenko V.N., Petrash T.A., “Periodic solutions of the string oscillations equation with Neumann and Dirichlet boundary conditions and with a discontinuous nonlinearity”, Proceedings of the Institute of Mathematics and Mechanics of Ural Branch of RAS, 18, no. 2 (2012), 199–204 (In Russ.)
[13] T. W. Ma, “Topological degree for set valued compact vector fields in locally convex spaces”, Rozprawy Mat., 92 (1972), 3–47 | MR
[14] Yosida K., Functional analysis, Springer-Verlag, Berlin — Höttingen — Geidelberg, 1965, 501 pp. | MR | Zbl