Periodic solutions existence for a second order differential equation with a discontinuous nonlinearity
Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 3, pp. 323-332.

Voir la notice de l'article provenant de la source Math-Net.Ru

An existence theorem is obtained for a periodic solution of an ordinary second order differential equation with discontinuous nonlinearity in the resonance case. The solutions are considered in the sense of differential inclusion. It is assumed that the non-linearity is of Borel (mod 0) and is bounded. At infinity, it satisfies the one-dimensional analogue of the Landesman — Laser condition for resonant elliptic boundary value problems. The operator statement of the problem under consideration leads to the problem of the existence of fixed points in a multi-valued compact map. To describe the convexity of Nemytskiy operator generated by nonlinearity, the results of M.A. Krasnoselsky and A.V. Pokrovsky are used. The presence of a fixed point is established using the multi-valued version of the Leray — Schauder method.
Keywords: second order differential equation, discontinuous nonlinearity, periodic solution, topological degree.
@article{CHFMJ_2019_4_3_a4,
     author = {V. N. Pavlenko and A. A. Asryan},
     title = {Periodic solutions existence for a second order differential equation with a discontinuous nonlinearity},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {323--332},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_3_a4/}
}
TY  - JOUR
AU  - V. N. Pavlenko
AU  - A. A. Asryan
TI  - Periodic solutions existence for a second order differential equation with a discontinuous nonlinearity
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2019
SP  - 323
EP  - 332
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_3_a4/
LA  - ru
ID  - CHFMJ_2019_4_3_a4
ER  - 
%0 Journal Article
%A V. N. Pavlenko
%A A. A. Asryan
%T Periodic solutions existence for a second order differential equation with a discontinuous nonlinearity
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2019
%P 323-332
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_3_a4/
%G ru
%F CHFMJ_2019_4_3_a4
V. N. Pavlenko; A. A. Asryan. Periodic solutions existence for a second order differential equation with a discontinuous nonlinearity. Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 3, pp. 323-332. http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_3_a4/

[1] Krasnosel'skii M.A., Pokrovsky A.V., Systems with hysteresis, Nauka Publ., Moscow, 1983, 448 pp. (In Russ.) | MR

[2] Shragin I.V., “Conditions for the measurability of superpositions”, Reports of USSR Academy of Science, 197:2 (1971), 295–298 (In Russ.) | MR | Zbl

[3] E. M. Landesman, A. C. Lazer, “Nonlinear perturbations of linear e11iptic boundary value problems at resonance”, Journal of Mathematics and Mechanics, 19:7 (1970), 609–623 | MR | Zbl

[4] I. Rachunkova, M. Tvrdy, I. Vrkoc, “Existence of nonnegative and nonpositive solutions for second order periodic boundary value problems”, Journal of Differential equations, 176 (2001), 445–469 | DOI | MR | Zbl

[5] P. Torres, “Weak singularities may help periodic solutions to exist”, Journal of Differential equations, 232 (2007), 277–284 | DOI | MR | Zbl

[6] P. Torres, “Existence of one-signed periodic solutions of some second-order differential equation via a Krasnoselskii fixed point theorem”, Journal of Differential equation, 190 (2003), 643–662 | DOI | MR | Zbl

[7] M. A. Krasnoselsii, Positive Solutions of Operator Equations, P. Noordhoff Ltd., Groningen, 1964, 381 pp. | MR

[8] M. Filippakis, N. Papageorgion, V. Staicu, “Positive solutions for nonlinear periodic problems”, Positivity, 12 (2008), 433–750 | DOI | MR

[9] Y. Wang, Y. Ru, “On positive periodic solutions of second order singular equations”, Boundary Value Problems, 114 (2018), 1–10 | MR | Zbl

[10] D. Guo, V. Lakshmicantham, Nonlinear Problems in Abstract Cones, Academic Press, New York, 1988, 275 pp. | MR | Zbl

[11] Galikhanov I.F., Pavlenko V.N., “Periodic solutions of the telegraph equation with a discontinuous nonlinearity”, Ufa Mathematical Journal, 4:2 (2012), 74–79 | MR

[12] Pavlenko V.N., Petrash T.A., “Periodic solutions of the string oscillations equation with Neumann and Dirichlet boundary conditions and with a discontinuous nonlinearity”, Proceedings of the Institute of Mathematics and Mechanics of Ural Branch of RAS, 18, no. 2 (2012), 199–204 (In Russ.)

[13] T. W. Ma, “Topological degree for set valued compact vector fields in locally convex spaces”, Rozprawy Mat., 92 (1972), 3–47 | MR

[14] Yosida K., Functional analysis, Springer-Verlag, Berlin — Höttingen — Geidelberg, 1965, 501 pp. | MR | Zbl