The boundary of stability in a simple class of monodromic germs
Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 3, pp. 276-284
Voir la notice de l'article provenant de la source Math-Net.Ru
A two-parameter family of vector fields is constructed with a monodromic singular point and with a Newton diagram consisting of one edge. For this family, the conditions of "nondegeneracy" are satisfied, allowing it to be assigned to a class with a simple monodromic singular point. The asymptotics of the stability boundary in this family is constructed, which contains terms with a logarithm, which implies the analytical unsolvability of the stability problem in the closure of this class of vector fields with a simple monodromic singular point.
Keywords:
monodromic singular point, focus, center, monodromy transformation, Newton diagram, stability boundary, analytic solvability.
@article{CHFMJ_2019_4_3_a2,
author = {N. B. Medvedeva and V. A. Viktorova},
title = {The boundary of stability in a simple class of monodromic germs},
journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
pages = {276--284},
publisher = {mathdoc},
volume = {4},
number = {3},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_3_a2/}
}
TY - JOUR AU - N. B. Medvedeva AU - V. A. Viktorova TI - The boundary of stability in a simple class of monodromic germs JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2019 SP - 276 EP - 284 VL - 4 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_3_a2/ LA - ru ID - CHFMJ_2019_4_3_a2 ER -
N. B. Medvedeva; V. A. Viktorova. The boundary of stability in a simple class of monodromic germs. Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 3, pp. 276-284. http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_3_a2/