The boundary of stability in a simple class of monodromic germs
Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 3, pp. 276-284

Voir la notice de l'article provenant de la source Math-Net.Ru

A two-parameter family of vector fields is constructed with a monodromic singular point and with a Newton diagram consisting of one edge. For this family, the conditions of "nondegeneracy" are satisfied, allowing it to be assigned to a class with a simple monodromic singular point. The asymptotics of the stability boundary in this family is constructed, which contains terms with a logarithm, which implies the analytical unsolvability of the stability problem in the closure of this class of vector fields with a simple monodromic singular point.
Keywords: monodromic singular point, focus, center, monodromy transformation, Newton diagram, stability boundary, analytic solvability.
@article{CHFMJ_2019_4_3_a2,
     author = {N. B. Medvedeva and V. A. Viktorova},
     title = {The boundary of  stability in a simple class of monodromic germs},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {276--284},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_3_a2/}
}
TY  - JOUR
AU  - N. B. Medvedeva
AU  - V. A. Viktorova
TI  - The boundary of  stability in a simple class of monodromic germs
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2019
SP  - 276
EP  - 284
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_3_a2/
LA  - ru
ID  - CHFMJ_2019_4_3_a2
ER  - 
%0 Journal Article
%A N. B. Medvedeva
%A V. A. Viktorova
%T The boundary of  stability in a simple class of monodromic germs
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2019
%P 276-284
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_3_a2/
%G ru
%F CHFMJ_2019_4_3_a2
N. B. Medvedeva; V. A. Viktorova. The boundary of  stability in a simple class of monodromic germs. Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 3, pp. 276-284. http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_3_a2/