The boundary of stability in a simple class of monodromic germs
Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 3, pp. 276-284.

Voir la notice de l'article provenant de la source Math-Net.Ru

A two-parameter family of vector fields is constructed with a monodromic singular point and with a Newton diagram consisting of one edge. For this family, the conditions of "nondegeneracy" are satisfied, allowing it to be assigned to a class with a simple monodromic singular point. The asymptotics of the stability boundary in this family is constructed, which contains terms with a logarithm, which implies the analytical unsolvability of the stability problem in the closure of this class of vector fields with a simple monodromic singular point.
Keywords: monodromic singular point, focus, center, monodromy transformation, Newton diagram, stability boundary, analytic solvability.
@article{CHFMJ_2019_4_3_a2,
     author = {N. B. Medvedeva and V. A. Viktorova},
     title = {The boundary of  stability in a simple class of monodromic germs},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {276--284},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_3_a2/}
}
TY  - JOUR
AU  - N. B. Medvedeva
AU  - V. A. Viktorova
TI  - The boundary of  stability in a simple class of monodromic germs
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2019
SP  - 276
EP  - 284
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_3_a2/
LA  - ru
ID  - CHFMJ_2019_4_3_a2
ER  - 
%0 Journal Article
%A N. B. Medvedeva
%A V. A. Viktorova
%T The boundary of  stability in a simple class of monodromic germs
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2019
%P 276-284
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_3_a2/
%G ru
%F CHFMJ_2019_4_3_a2
N. B. Medvedeva; V. A. Viktorova. The boundary of  stability in a simple class of monodromic germs. Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 3, pp. 276-284. http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_3_a2/

[1] Arnol'd V.I., “Ordinary differential equations — 1”, Results of science and technology. Contemporary problems of mathematics. Fundamental directions, 1 (1985), 7–149 (In Russ.) | Zbl

[2] Yu. S. Il'yashenko, Finiteness Theorems for Limit Cycles, American Mathematical Society, Providence, Rhode Island, 1991, 289 pp. | MR

[3] Arnold V.I., “On local problems of analysis”, Bulletin of Moscow University. Series 1. Mathematics. Mechanics, 1970, no. 2, 52–56 (In Russ.)

[4] Il'yashenko Yu.S., “Algebraically and analytically solvable local problems of the theory of ordinary differential equations”, Proceedings of I.G. Petrovskiy workshop, no. 12, 1987, 118–136 (In Russ.)

[5] Medvedeva N.B., “On the analytic solvability of the problem of distinguishing between center and focus”, Proceedings of the Steklov Institute of Mathematics, no. 254, 2006, 7–93 | DOI | MR | Zbl

[6] Il'yashenko Yu.S., “Algebraic nonsolvability and almost algebraic solvability of the center — focus problem”, Functional Analysis and Its Applications, 6:3 (1972), 197–202 | DOI | MR

[7] Medvedeva N.B., “On an analytic solvability of the center — focus problem”, Doklady Mathematics, 69:1 (2004), 120–122 | MR | Zbl

[8] Medvedeva N.B., “On analytic insolubility of the stability problem on the plane”, Russian Mathematical Surveys, 68:5 (2013), 923–250 | DOI | DOI | MR | Zbl

[9] Voronin A.S., Medvedeva N.B., “Asymptotics of the monodromy transformation in certain classes of monodromy germs”, Izvestiya: Mathematics, 77:2 (2013), 253–270 | DOI | DOI | MR | Zbl

[10] Medvedeva N.B., “Asymptotic expansion of a monodromy map”, Chelyabinsk Physical and Mathematical Journal, 1:1 (2016), 59–72 (In Russ.) | MR