On an initial-boundary value problem arising in the dynamics
Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 2, pp. 179-198.

Voir la notice de l'article provenant de la source Math-Net.Ru

A linearized problem of small motions of a system of layers of incompressible ideal stratified fluids with a free surface, covered with the elastic ice that is modeled by the elastic plate, is considered. With using the method of the orthogonal projecting the boundary conditions on the moving surface, the original initial-boundary value problem is reduced to the equivalent Cauchy problem for an ordinary differential equation of the second order in some Hilbert space. We find the conditions under which there exists a time-strong solution to the initial-boundary value problem describing the evolution of the original hydrodynamics system.
Keywords: stratified fluid, elastic ice, differential-operator equation, the Cauchy problem in a Hilbert space, strong solution.
@article{CHFMJ_2019_4_2_a4,
     author = {D. O. Tsvetkov},
     title = {On an initial-boundary value problem arising in the dynamics},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {179--198},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_2_a4/}
}
TY  - JOUR
AU  - D. O. Tsvetkov
TI  - On an initial-boundary value problem arising in the dynamics
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2019
SP  - 179
EP  - 198
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_2_a4/
LA  - ru
ID  - CHFMJ_2019_4_2_a4
ER  - 
%0 Journal Article
%A D. O. Tsvetkov
%T On an initial-boundary value problem arising in the dynamics
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2019
%P 179-198
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_2_a4/
%G ru
%F CHFMJ_2019_4_2_a4
D. O. Tsvetkov. On an initial-boundary value problem arising in the dynamics. Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 2, pp. 179-198. http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_2_a4/

[1] Kozin V.M., Zhyostkaya V.D., Pogorelova A.V. [et al.], Applied problems of ice cover dynamics, Akademiya Estestvoznaniya Publ., Moscow, 2008, 329 pp. (In Russ.)

[2] Bukatov A.E., Waves in the sea with floating ice cover, Marine Hydrophysical Institute, Sevastopol, 2017, 360 pp. (In Russ.)

[3] Tsvetkov D.O., “Small movements of a system of ideal stratified fluids completely covered with crumbled ice”, Bulletin of Irkutsk State University. Series: Mathematics, 26 (2018), 105–120 (In Russ.)

[4] N. D. Kopachevsky, S. G. Krein, Operator Approach to Linear Problems of Hydrodynamics, v. 1, Self-adjoint Problems for an Ideal Fluid, Birkhauser Verlag, Basel ; Boston ; Berlin, 2001, 384 pp. | MR | Zbl

[5] Tsvetkov D.O., “Small motions of an ideal stratified fluid with a free surface completely covered with the elastic ice”, Siberian Electronic Mathematical Reports, 15 (2018), 422–435 (In Russ.)

[6] Kopachevsky N.D., Tsvetkov D.O., “Oscillations of stratified fluids”, Journal of Mathematical Sciences, 164:4 (2010), 574–602 | DOI | MR

[7] Agranovich M.S., “Spectral problems for second-order strongly elliptic systems in smooth and non-smooth domains”, Russian Mathematical Surveys, 57:5 (2002), 847–920 | DOI | DOI | MR | Zbl

[8] Krein S.G., Linear Differential Equations in Banach Space, Americam Mathematical Society, 1972, 464 pp. | MR