New lower bound for the modulus of an analytic function
Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 2, pp. 155-164.

Voir la notice de l'article provenant de la source Math-Net.Ru

A lower bound for the minimum of the modulus of an analytic function in terms of the integral norm on a «large» circle is obtained. The proof uses the basic facts of the theory of spaces of analytic functions in the disk and the classical Chebyshev polynomials. From the main theorem a statement for an entire function is derived in which the integral norm replaced by the maximum modulus. A special example of a sequence of entire functions is constructed, showing that this result cannot be much improved. Earlier in the theory of entire functions theorems on lower estimates for the modulus of an entire function on a system of circles expanding to infinity through some degrees of the maximum of the modulus on the same circles were known.
Keywords: analytic function, minimum modulus, Chebyshev polynomials.
@article{CHFMJ_2019_4_2_a2,
     author = {A. Yu. Popov},
     title = {New lower bound for the modulus of an analytic function},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {155--164},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_2_a2/}
}
TY  - JOUR
AU  - A. Yu. Popov
TI  - New lower bound for the modulus of an analytic function
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2019
SP  - 155
EP  - 164
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_2_a2/
LA  - ru
ID  - CHFMJ_2019_4_2_a2
ER  - 
%0 Journal Article
%A A. Yu. Popov
%T New lower bound for the modulus of an analytic function
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2019
%P 155-164
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_2_a2/
%G ru
%F CHFMJ_2019_4_2_a2
A. Yu. Popov. New lower bound for the modulus of an analytic function. Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 2, pp. 155-164. http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_2_a2/

[1] Titchmarsh E.C., The Theory of Functions, Oxford University Press, London, 1939, 455 pp. | MR | Zbl

[2] Koosis P., Introduction to $H_p$ spaces, Cambridge University Press, Cambridge, New-York, Melbourne, 1980, 276 pp. | MR | Zbl

[3] R. P. Boas, Entire functions, Academic Press, New York, 1954, 276 pp. | MR | Zbl

[4] W. K. Hayman, Subharmonic functions, v. 2, Academic Press, London, New York, 1989, 875 pp. | MR | Zbl

[5] W. K. Hayman, “The minimum modulus of large integral functions”, Proceedings of the London Mathematical Society, s3-2:1 (1952), 469–512 | DOI | MR | Zbl

[6] Gel'fond A.O., Calculus of finite differences, Hindustan Publ. Corp., Delhi, 1971, 451 pp. | MR | MR | Zbl