Distributional chaos and Li~--- Yorke chaos in metric spaces
Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 1, pp. 42-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce several new types and generalizations of the concepts distributional chaos and Li — Yorke chaos. We consider the general sequences of binary relations acting between metric spaces, while in a separate section we focus our attention to some special features of distributionally chaotic and Li — Yorke chaotic multivalued linear operators in Fréchet spaces.
Keywords: distributional chaos, Li — Yorke chaos, binary relation, metric space, multivalued linear operator.
@article{CHFMJ_2019_4_1_a3,
     author = {M. Kosti\'c},
     title = {Distributional chaos and {Li~---} {Yorke} chaos in metric spaces},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {42--58},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_1_a3/}
}
TY  - JOUR
AU  - M. Kostić
TI  - Distributional chaos and Li~--- Yorke chaos in metric spaces
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2019
SP  - 42
EP  - 58
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_1_a3/
LA  - en
ID  - CHFMJ_2019_4_1_a3
ER  - 
%0 Journal Article
%A M. Kostić
%T Distributional chaos and Li~--- Yorke chaos in metric spaces
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2019
%P 42-58
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_1_a3/
%G en
%F CHFMJ_2019_4_1_a3
M. Kostić. Distributional chaos and Li~--- Yorke chaos in metric spaces. Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 1, pp. 42-58. http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_1_a3/

[1] Bayart F., Matheron E., Dynamics of Linear Operators, Cambridge University Press, Cambridge, 2009, 337 pp. | MR | Zbl

[2] Grosse-Erdmann K.-G., Peris A., Linear Chaos, Springer-Verlag, London, 2011, 388 pp. | MR | Zbl

[3] Conejero J.A., Chen C.-C., Kostić M., Murillo-Arcila M., “Dynamics of multivalued linear operators”, Open Mathematics, 15 (2017), 948–958 | MR | Zbl

[4] Abakumov E., Boudabbous M., Mnif M., “On hypercyclicity of linear relations”, Results in Mathematics, 73:137 (2018), 1–17 | MR

[5] Conejero J.A., Chen C.-C., Kostić M., Murillo-Arcila M., “Dynamics on binary relations over topological spaces”, Symmetry, 10:211 (2018), 1–12

[6] Kostić M., “${\mathcal F}$-hypercyclic extensions and disjoint ${\mathcal F}$-hypercyclic extensions of binary relations over topological spaces”, Functional Analysis, Approximation and Computation, 10 (2018), 41–52 | MR | Zbl

[7] Schweizer B., Smítal J., “Measures of chaos and a spectral decomposition of dynamical systems on the interval”, Transactions of the American Mathematical Society, 344 (1994), 737–754 | DOI | MR | Zbl

[8] Duan J., Fu X.-C., Liu P.-D., Manning A., “A linear chaotic quantum harmonic oscillator”, Applied Mathematics Letters, 12 (1999), 15–19 | DOI | MR | Zbl

[9] Oprocha P., “A quantum harmonic oscillator and strong chaos”, Journal of Physics. A, 39 (2006), 14559–14565 | DOI | MR | Zbl

[10] Bernardes Jr. N.C., Bonilla A., Müler V., Peris A., “Distributional chaos for linear operators”, Journal of Functional Analysis, 265:1 (2013), 2143–2163 | DOI | MR | Zbl

[11] Conejero J.A., Kostić M., Miana P.J., Murillo-Arcila M., “Distributionally chaotic families of operators on Fréchet spaces”, Communications of Pure and Applied Analysis, 15 (2016), 1915–1939 | DOI | MR | Zbl

[12] Li T.Y., Yorke J.A., “Period three implies chaos.”, The American Mathematics Monthly, 2 (1975), 985–992 | MR

[13] Bermúdez T., Bonilla A,, Martinez-Gimenez F., Peris A., “Li — Yorke and distributionally chaotic operators”, Journal of Mathematical Analysis and Applications, 373 (2011), 83–93 | DOI | MR | Zbl

[14] Bernardes Jr. N.C., Bonilla A., Müler V., Peris A., “Li — Yorke chaos in linear dynamics”, Ergodic Theory and Dynamical Systems, 35 (2015), 1723–1745 | DOI | MR | Zbl

[15] Akin E., Kolyada S., “Li — Yorke sensitivity”, Nonlinearity, 16 (2003), 1421–1433 | DOI | MR | Zbl

[16] Blanchard F., Glasner E., Kolyada S., Maass A., “On Li — Yorke pairs”, Journal für die reine und angewandte Mathematik, 547 (2002), 51–68 | MR | Zbl

[17] Fu H.M., Xiong J.C., Wang H.Y., “The hierarchy of distributional chaos”, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 25:1 (2015), 1550001-1–1550001-10 | DOI | MR | Zbl

[18] Huang W., Ye X., “Devaney's chaos or 2-scattering implies Li — Yorke chaos”, Topology and its Applications, 117 (2002), 259–272 | DOI | MR | Zbl

[19] Kostić M., “Li — Yorke chaotic properties of abstract differential equations of first order”, Applied Mathematics Computing Sciences, 1 (2016), 15–26

[20] Luo L., Hou B., “Some remarks on distributional chaos for bounded linear operators”, Turkish Journal of Mathematics, 39 (2015), 251–258 | DOI | MR | Zbl

[21] Oprocha P., “Distributional chaos revisited”, Transactions of the American Mathematical Society, 361 (2009), 4901–4925 | DOI | MR | Zbl

[22] Tan F., Fu H.M., “On distributional $n-$chaos”, Acta Mathematica Scientia. Series B. English Edition, 34:5 (2014), 1473–1480 | DOI | MR | Zbl

[23] Bernardes Jr. N.C., Bonilla A., Peris A., Wu X., “Distributional chaos for operators on Banach spaces”, Journal of Mathematical Analysis and Applications, 459 (2018), 797–821 | DOI | MR | Zbl

[24] Cross R., Multivalued Linear Operators, Taylor Francis Inc., New York, 1998, 352 pp. | MR

[25] Favini A., Yagi A., Degenerate Differential Equations in Banach Spaces, Marcel Dekker Inc., New York, Basel, Hong Kong, 1998, 314 pp. | MR

[26] Sviridyuk G.A., Fedorov V.E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht, Boston, 2003, 216 pp. | MR | Zbl

[27] Kostić M., Generalized Semigroups and Cosine Functions, Mathematical Institute SANU, Belgrade, 2011, 355 pp. | MR | Zbl

[28] Kostić M., Abstract Volterra Integro-Differential Equations, CRC Press, Boca Raton, Fl., 2015, 484 pp. | MR | Zbl