Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2019_4_1_a2, author = {B. Kh. Turmetov}, title = {On a generalization of the third boundary value problem for the {Laplace} equation}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {33--41}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_1_a2/} }
TY - JOUR AU - B. Kh. Turmetov TI - On a generalization of the third boundary value problem for the Laplace equation JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2019 SP - 33 EP - 41 VL - 4 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_1_a2/ LA - ru ID - CHFMJ_2019_4_1_a2 ER -
B. Kh. Turmetov. On a generalization of the third boundary value problem for the Laplace equation. Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 1, pp. 33-41. http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_1_a2/
[1] M. A. Sadybekov, B. Kh. Turmetov, “On analogues of periodic boundary value problems for the Laplace operator in ball”, Eurasian Mathematical Journal, 3:1 (2012), 143–146 | MR | Zbl
[2] Sadybekov M.A., Turmetov B.Kh., “On an analog of periodic boundary value problems for the Poisson equation in the disk”, Differential Equations, 50:2 (2014), 268–273 | DOI | DOI | MR | MR | Zbl
[3] M. A. Sadybekov, B. Kh. Turmetov, B. T. Torebek, “Solvability of nonlocal boundary-value problems for the Laplace equation in the ball”, Electronic Journal of Differential Equations, 2014:157 (2014), 1–14 | MR
[4] V. V. Karachik, B. Kh. Turmetov, “On solvability of some Neumann-type boundary value problems for biharmonic equation”, Electronic Journal of Differential Equations, 2017:218 (2017), 1–17 | MR
[5] B. Kh. Turmetov, V. V. Karachik, “On solvability of some boundary value problems for a biharmonic equation with periodic conditions”, Filomat, 32:3 (2018), 947–953 | DOI | MR
[6] Karachik V.V., “A problem for the polyharmonic equation in the sphere”, Siberian Mathematical Journal, 32:5 (1991), 767–774 | DOI | MR | Zbl
[7] Sobolev S.L., Introduction to the Theory of Cubature Formulas, Nauka Publ., Moscow, 1964, 808 pp. (In Russ.) | MR