On a generalization of the third boundary value problem for the Laplace equation
Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 1, pp. 33-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the solvability of new classes of boundary value problems for the Laplace equation. The problems under investigation are a generalization of the classical third boundary value problem for the Laplace equation. Theorems on the existence and uniqueness of the solution of the problem are proved. Conditions for the solvability of the problem are found and integral representations of the solution are established.
Keywords: Laplace equation, third boundary value problem, boundary conditions with involution, existence of a solution, uniqueness.
@article{CHFMJ_2019_4_1_a2,
     author = {B. Kh. Turmetov},
     title = {On a generalization of the third boundary value problem for the {Laplace} equation},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {33--41},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_1_a2/}
}
TY  - JOUR
AU  - B. Kh. Turmetov
TI  - On a generalization of the third boundary value problem for the Laplace equation
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2019
SP  - 33
EP  - 41
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_1_a2/
LA  - ru
ID  - CHFMJ_2019_4_1_a2
ER  - 
%0 Journal Article
%A B. Kh. Turmetov
%T On a generalization of the third boundary value problem for the Laplace equation
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2019
%P 33-41
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_1_a2/
%G ru
%F CHFMJ_2019_4_1_a2
B. Kh. Turmetov. On a generalization of the third boundary value problem for the Laplace equation. Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 1, pp. 33-41. http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_1_a2/

[1] M. A. Sadybekov, B. Kh. Turmetov, “On analogues of periodic boundary value problems for the Laplace operator in ball”, Eurasian Mathematical Journal, 3:1 (2012), 143–146 | MR | Zbl

[2] Sadybekov M.A., Turmetov B.Kh., “On an analog of periodic boundary value problems for the Poisson equation in the disk”, Differential Equations, 50:2 (2014), 268–273 | DOI | DOI | MR | MR | Zbl

[3] M. A. Sadybekov, B. Kh. Turmetov, B. T. Torebek, “Solvability of nonlocal boundary-value problems for the Laplace equation in the ball”, Electronic Journal of Differential Equations, 2014:157 (2014), 1–14 | MR

[4] V. V. Karachik, B. Kh. Turmetov, “On solvability of some Neumann-type boundary value problems for biharmonic equation”, Electronic Journal of Differential Equations, 2017:218 (2017), 1–17 | MR

[5] B. Kh. Turmetov, V. V. Karachik, “On solvability of some boundary value problems for a biharmonic equation with periodic conditions”, Filomat, 32:3 (2018), 947–953 | DOI | MR

[6] Karachik V.V., “A problem for the polyharmonic equation in the sphere”, Siberian Mathematical Journal, 32:5 (1991), 767–774 | DOI | MR | Zbl

[7] Sobolev S.L., Introduction to the Theory of Cubature Formulas, Nauka Publ., Moscow, 1964, 808 pp. (In Russ.) | MR