Classification if rank 2 stationary submodels of ideal hydrodynamics
Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 1, pp. 18-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

For two-dimensional subalgebras of the twelve-dimensional Lie algebra, admitted by the equations of the ideal hydrodynamics with the equation of state in the form of pressure, represented as the sum of the density and entropy functions, invariant submodels of rank 2 of the canonical form of stationary type are constructed. The canonical form for rank 2 invariant submodels of stationary type of the eleven-dimensional Lie algebra, admitted by the equations of gas dynamics with the state equation of a general form, is specified.
Keywords: ideal hydrodynamics equations, equation of state, permissible subalgebra, representation of invariant solution, invariant submodel, stationary type of submodel, canonical form of submodel.
@article{CHFMJ_2019_4_1_a1,
     author = {D. T. Siraeva},
     title = {Classification if rank 2 stationary submodels of ideal hydrodynamics},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {18--32},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_1_a1/}
}
TY  - JOUR
AU  - D. T. Siraeva
TI  - Classification if rank 2 stationary submodels of ideal hydrodynamics
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2019
SP  - 18
EP  - 32
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_1_a1/
LA  - ru
ID  - CHFMJ_2019_4_1_a1
ER  - 
%0 Journal Article
%A D. T. Siraeva
%T Classification if rank 2 stationary submodels of ideal hydrodynamics
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2019
%P 18-32
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_1_a1/
%G ru
%F CHFMJ_2019_4_1_a1
D. T. Siraeva. Classification if rank 2 stationary submodels of ideal hydrodynamics. Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 1, pp. 18-32. http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_1_a1/

[1] Ovsyannikov L.V., “The “podmodeli” program. Gas dynamics”, Journal of Applied Mathematics and Mechanics, 58:4 (1994), 601–627 | DOI | MR | Zbl

[2] Khabirov S.V., “Nonisomorphic Lie algebras admitted by gasdynamic models”, Ufa Mathematical Journal, 3:2 (2011), 85–88 | MR | MR | Zbl

[3] Khabirov S.V., “Optimal system for sum of two ideals admitted by hydrodynamic type equations”, Ufa Mathematical Journal, 6:2 (2014), 97–101 | DOI | MR

[4] Chirkunov Yu.A., Khabirov S.V., Symmetry Analysis Elements of Continuum Mechanics Differential Equations, Novosibirsk State Technical University, Novosibirsk, 2012, 659 pp. (In Russ.)

[5] Mamontov E.V., “Invariant submodels of rank two of the equations of gas dynamics”, Journal of Applied Mechanics and Technical Physics, 40:2 (1999), 232–237 (In Russ.) | MR | Zbl

[6] Siraeva D.T., “Optimal system of non-similar subalgebras of sum of two ideals”, Ufa Mathematical Journal, 6:1 (2014), 90–103 | DOI | MR | Zbl

[7] Siraeva D.T., “Reduction of partially invariant submodels of rank 3, defect 1 to invariant submodels”, Multiphase Systems, 13:3 (2018), 59–-63 (In Russ.) | MR

[8] Khabirov S.V., Analytical methods in gas dynamics, Bashkir State University, Ufa, 2013, 192 pp. (In Russ.)

[9] Ovsyannikov L.V., Group analysis of differential equations, Science Publ., Moscow, 1978, 400 pp. (In Russ.)

[10] Khabirov S.V., “Reduction of an invariant submodel of gas dynamics to canonical form”, Mathematical Notes, 66:3 (1999), 355–359 | DOI | DOI | MR | Zbl

[11] Siraeva D.T., Khabirov S.V., “Invariant submodel of rank 2 on subalgebra of translations linear combinations for a hydrodynamic type model”, Chelyabinsk Physical and Mathematical Journal, 3:1 (2018), 38–57 (In Russ.) | MR