The structure of a shock wave's front in a heterogeneous mixture of two isothermal viscous gases
Čelâbinskij fiziko-matematičeskij žurnal, Tome 3 (2018) no. 4, pp. 461-475.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of a shock wave frontline structure is studied for a heterogeneous mixture of two viscous gases with pair interaction forces. In the pending physical model we assume that the both components of the mixture have isothermal equations of the state and the pair interaction is carried out through the momentum exchange between the components. The pair interaction force is assumed to be linear with respect to the difference of the components velocities. In the work we justify the method of construction of discontinuous solutions for ideal gases by the analysis of the limiting transition from viscous mixture to ideal one in the framework of the theory of fast-slow dynamical systems. It is noted that in the limit case only four shock wave types with different structures of the frontline are possible. For all four types we provide results of numerical calculations of the shock wave frontline structure.
Keywords: shock wave, structure of front, heterogeneous mixture, pair interaction, isothermal gas.
@article{CHFMJ_2018_3_4_a6,
     author = {S. M. Voronin and V. A. Adarchenko and A. V. Panov},
     title = {The structure of a shock wave's front in a heterogeneous mixture of two isothermal viscous gases},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {461--475},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_4_a6/}
}
TY  - JOUR
AU  - S. M. Voronin
AU  - V. A. Adarchenko
AU  - A. V. Panov
TI  - The structure of a shock wave's front in a heterogeneous mixture of two isothermal viscous gases
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2018
SP  - 461
EP  - 475
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_4_a6/
LA  - ru
ID  - CHFMJ_2018_3_4_a6
ER  - 
%0 Journal Article
%A S. M. Voronin
%A V. A. Adarchenko
%A A. V. Panov
%T The structure of a shock wave's front in a heterogeneous mixture of two isothermal viscous gases
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2018
%P 461-475
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_4_a6/
%G ru
%F CHFMJ_2018_3_4_a6
S. M. Voronin; V. A. Adarchenko; A. V. Panov. The structure of a shock wave's front in a heterogeneous mixture of two isothermal viscous gases. Čelâbinskij fiziko-matematičeskij žurnal, Tome 3 (2018) no. 4, pp. 461-475. http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_4_a6/

[1] C. Bellei, P. A. Amendt, S. C. Wilks [et al.], “Species separation in inertial confinement fusion fuels”, Physics of Plasmas, 20 (2013), 012701 | DOI

[2] F. S. Sherman, “Shock-wave structure in binary mixtures of chemically inert perfect gases”, Journal of Fluid Mechanics, 8:3 (1960), 465–480 | DOI | MR | Zbl

[3] E. Goldman, L. Sirovich, “The structure of shock-waves in gas mixtures”, Journal of Fluid Mechanics, 35:3 (1969), 575–597 | DOI | Zbl

[4] Ruev G.A., Fomin V.M., Yanenko N.N., “Shock wave structure in gase mixtures”, Reports of the USSR Academy of Sciences, 261:2 (1981), 285–290 (In Russ.) | MR | Zbl

[5] Buryakov O.V., Kuropatenko V.F., “The propagation of a rarefaction wave and a shock wave in a heterogeneous mixture of two isothermal gases”, Issues of nuclear science and engineering. Ser. Methods and programs for the numerical solution of mathematical physics problems, 1981, no. 2 (8), 3–7 (In Russ.)

[6] Kazakov Yu.V., Fedorov A.V., Fomin V.M., “The structure of isothermal shock waves in gas suspension”, Problems of the filtration theory and mechanics of oil recovery processes, Nauka Publ., Moscow, 1987, 108–115 (In Russ.)

[7] Kiselev S.P., Ruev A.P., Trunev A.P., Fomin V.M., Shavaliev M.Sh., Shock-wave processes in two-component and biphasic media, Nauka Publ., Novosibirsk, 1992, 261 pp. (In Russ.)

[8] B. W. Skews, A. Levy, D. Levi-Hevroni, “Shock wave propogation in porous media”, Handbook of Shock Waves, eds. G. Ben-Dor, O. Igra, T. Elperin, Academic Press, Boston, 2000, 546–780

[9] Buryakov O.V., Kuropatenko V.F., “The structure of the front of the shock wave in a heterogeneous mixture of two isothermal gases in the presence of interaction forces of the components”, Issues of nuclear science and engineering. Ser. Methods and programs for the numerical solution of mathematical physics problems, 1985, no. 3, 19–24 (In Russ.)

[10] Fedorov A.V., “Structure of the shock wave front in a mixture of two solid bodies”, Modelling in mechanics, 5:4 (1991), 135–158 (In Russ.) | MR | Zbl

[11] Arnold V.I., Afrajmovich V.S., Il'yashenko Yu.S., Shil'nikov L.P., Dynamical Systems V. Bifurcation Theory and Catastrophe Theory, Springer-Verlag, Berlin–Heidelberg, 1994, IX+274 pp. | MR | Zbl | Zbl