Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2018_3_4_a6, author = {S. M. Voronin and V. A. Adarchenko and A. V. Panov}, title = {The structure of a shock wave's front in a heterogeneous mixture of two isothermal viscous gases}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {461--475}, publisher = {mathdoc}, volume = {3}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_4_a6/} }
TY - JOUR AU - S. M. Voronin AU - V. A. Adarchenko AU - A. V. Panov TI - The structure of a shock wave's front in a heterogeneous mixture of two isothermal viscous gases JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2018 SP - 461 EP - 475 VL - 3 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_4_a6/ LA - ru ID - CHFMJ_2018_3_4_a6 ER -
%0 Journal Article %A S. M. Voronin %A V. A. Adarchenko %A A. V. Panov %T The structure of a shock wave's front in a heterogeneous mixture of two isothermal viscous gases %J Čelâbinskij fiziko-matematičeskij žurnal %D 2018 %P 461-475 %V 3 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_4_a6/ %G ru %F CHFMJ_2018_3_4_a6
S. M. Voronin; V. A. Adarchenko; A. V. Panov. The structure of a shock wave's front in a heterogeneous mixture of two isothermal viscous gases. Čelâbinskij fiziko-matematičeskij žurnal, Tome 3 (2018) no. 4, pp. 461-475. http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_4_a6/
[1] C. Bellei, P. A. Amendt, S. C. Wilks [et al.], “Species separation in inertial confinement fusion fuels”, Physics of Plasmas, 20 (2013), 012701 | DOI
[2] F. S. Sherman, “Shock-wave structure in binary mixtures of chemically inert perfect gases”, Journal of Fluid Mechanics, 8:3 (1960), 465–480 | DOI | MR | Zbl
[3] E. Goldman, L. Sirovich, “The structure of shock-waves in gas mixtures”, Journal of Fluid Mechanics, 35:3 (1969), 575–597 | DOI | Zbl
[4] Ruev G.A., Fomin V.M., Yanenko N.N., “Shock wave structure in gase mixtures”, Reports of the USSR Academy of Sciences, 261:2 (1981), 285–290 (In Russ.) | MR | Zbl
[5] Buryakov O.V., Kuropatenko V.F., “The propagation of a rarefaction wave and a shock wave in a heterogeneous mixture of two isothermal gases”, Issues of nuclear science and engineering. Ser. Methods and programs for the numerical solution of mathematical physics problems, 1981, no. 2 (8), 3–7 (In Russ.)
[6] Kazakov Yu.V., Fedorov A.V., Fomin V.M., “The structure of isothermal shock waves in gas suspension”, Problems of the filtration theory and mechanics of oil recovery processes, Nauka Publ., Moscow, 1987, 108–115 (In Russ.)
[7] Kiselev S.P., Ruev A.P., Trunev A.P., Fomin V.M., Shavaliev M.Sh., Shock-wave processes in two-component and biphasic media, Nauka Publ., Novosibirsk, 1992, 261 pp. (In Russ.)
[8] B. W. Skews, A. Levy, D. Levi-Hevroni, “Shock wave propogation in porous media”, Handbook of Shock Waves, eds. G. Ben-Dor, O. Igra, T. Elperin, Academic Press, Boston, 2000, 546–780
[9] Buryakov O.V., Kuropatenko V.F., “The structure of the front of the shock wave in a heterogeneous mixture of two isothermal gases in the presence of interaction forces of the components”, Issues of nuclear science and engineering. Ser. Methods and programs for the numerical solution of mathematical physics problems, 1985, no. 3, 19–24 (In Russ.)
[10] Fedorov A.V., “Structure of the shock wave front in a mixture of two solid bodies”, Modelling in mechanics, 5:4 (1991), 135–158 (In Russ.) | MR | Zbl
[11] Arnold V.I., Afrajmovich V.S., Il'yashenko Yu.S., Shil'nikov L.P., Dynamical Systems V. Bifurcation Theory and Catastrophe Theory, Springer-Verlag, Berlin–Heidelberg, 1994, IX+274 pp. | MR | Zbl | Zbl