On the compliance of the basic sets of A-endomorphisms and A-diffeomorphisms
Čelâbinskij fiziko-matematičeskij žurnal, Tome 3 (2018) no. 3, pp. 295-310.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a class of Smale — Vietoris A-diffeomorphisms that are defined using basic A-endomorphisms of manifolds, the dimension of which is less than the dimension of the supporting manifolds of A-diffeomorphisms. The class of Smale — Vietoris diffeomorphisms contains DE-mappings of Smale. We show that there is a one-to-one correspondence between the basic sets of the basic A-endomorphism and Smale — Vietoris diffeomorphisms. For back-invariant basic set of basis A-endomorphism there is an accurate description of the corresponding non-trivial basic set of Smale — Vietoris A-diffeomorphism. Using the description obtained, one constructs the bifurcation between different types of solenoidal basic sets.
Keywords: solenoid, axiom A, basic set, bifurcation.
@article{CHFMJ_2018_3_3_a2,
     author = {N. V. Isaenkova and E. V. Zhuzhoma},
     title = {On the compliance of the basic sets of {A-endomorphisms} and {A-diffeomorphisms}},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {295--310},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_3_a2/}
}
TY  - JOUR
AU  - N. V. Isaenkova
AU  - E. V. Zhuzhoma
TI  - On the compliance of the basic sets of A-endomorphisms and A-diffeomorphisms
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2018
SP  - 295
EP  - 310
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_3_a2/
LA  - ru
ID  - CHFMJ_2018_3_3_a2
ER  - 
%0 Journal Article
%A N. V. Isaenkova
%A E. V. Zhuzhoma
%T On the compliance of the basic sets of A-endomorphisms and A-diffeomorphisms
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2018
%P 295-310
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_3_a2/
%G ru
%F CHFMJ_2018_3_3_a2
N. V. Isaenkova; E. V. Zhuzhoma. On the compliance of the basic sets of A-endomorphisms and A-diffeomorphisms. Čelâbinskij fiziko-matematičeskij žurnal, Tome 3 (2018) no. 3, pp. 295-310. http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_3_a2/

[1] S. Smale, “Differentiable dynamical systems”, Bulletin of the American Mathematical Society, 73 (1967), 747–817 | DOI | MR | Zbl

[2] D. V. Anosov, “Initial concepts. Elementary theory”, Dynamic systems — 1, Results of science and technology. Modern problems of mathematics. Fundamental directions, 1, 1985, 156–204 (In Russ.)

[3] Grines V.Z., Zhuzhoma E.V., Pochinka O.V., “Rough diffeomorphisms with basis sets of codimension one”, Journal of Mathematical Sciences, 225:2 (2017), 195–219 | DOI | MR | Zbl

[4] Grines V.Z., Pochinka O.V., Introduction to the topological classification of diffeomorphisms on manifolds of dimension two and three, Izhevsk, RKhD Publ., Moscow, 2011, 424 pp. (In Russ.)

[5] S. Kh. Aranson, G. Belitsky, E. Zhuzhoma, “Introduction to Qualitative Theory of Dynamical Systems on Closed Surfaces”, American Mathematical Society, 1996, 425–437 | MR

[6] L. Vietoris, “Über den höheren Zusammenhahg kompakter Räume und Klasse von zusammenhangstreuen Abbildungen”, Mathematische Annalen, 97 (1927), 454–472 | DOI | MR | Zbl

[7] D. van Danzig, “Über topologisch homogene Kontinua”, Fundamenta Mathematicae, 14 (1930), 102–105

[8] F. Takens, “Multiplications in solenoids as hyperbolic attractors”, Topology and Applications, 152 (2005), 219–225 | DOI | MR | Zbl

[9] R. F. Williams, “One-dimensional non-wandering sets”, Topology, 6 (1967), 473–487 | DOI | MR | Zbl

[10] R. F. Williams, “Expanding attractors”, Publications math$\acute{\rm e}$matiques de l'IH$\acute{\rm E}$S., 43 (1974), 169–203 | MR

[11] L. Block, “Diffeomorphisms obtained from endoomorphisms”, Transactions of the American Mathematical Society, 214 (1975), 403–413 | DOI | MR | Zbl

[12] Zhuzhoma E.V., Isaenkova N.V., “Zero-dimensional solenoidal base sets”, Sbornik: Mathematics, 202:3 (2011), 351–372 | DOI | DOI | MR | Zbl

[13] Il'yashenko Yu.S., Veygu Li., Nonlocal bifurcations, MTsNMO Publ., Moscow, 1999, 415 pp. | MR | MR

[14] Turaev D.V., Shil'nikov L.P., “About blue sky disasters”, Doklady of Academy of Sciences, 342 (1995), 596–599 (In Russ.) | MR | Zbl

[15] Arnol'd V.I., Hesin B.A., Topological methods in hydrodynamics, MTsNMO, Moscow, 2007, 392 pp. (In Russ.)

[16] Vainshtein S.I., Zel'dovich Ya.B., “Origin of magnetic fields in astrophysics (Turbulent "dynamo" mechanisms)”, Soviet Physics Uspekhi, 15:2 (1972), 159–172 | DOI | DOI

[17] S. Childress, A. Gilbert, Stretch, Twist and Fold: The Fast Dynamo, Lecture Notes in Physics, Springer-Verlag, Berlin, Heidelberg, 1995, 412 pp.

[18] Zhuzhoma E.V., Medvedev V.S., Isaenkova N.V., “On the topological structure of the magnetic field in the photosphere regions”, Russian Journal of Nonlinear Dynamics, 13:3 (2017), 399–412 (In Russ.) | MR | Zbl

[19] Zhuzhoma E.V., Isaenkova N.V., “On classification of one-dimensional expanding attractors”, Mathematical Notes, 86:3 (2009), 333–341 | DOI | DOI | MR | Zbl

[20] H. Bothe, “Transversally wild expanding attractors”, Mathematische Nachrichten, 157 (1992), 25–49 | DOI | MR | Zbl

[21] F. Farrell, L. Jones, “New attractors in hyperbolic dynamics”, Journal of Differential Geometry., 15 (1980), 107–133 | DOI | MR | Zbl

[22] L. Jones, “Locally strange hyperbolic sets”, Transactions of the American Mathematical Society, 275:1 (1983), 153–162 | DOI | MR | Zbl

[23] C. Robinson, R. Williams, “Classification of expanding attractors: an example”, Topology, 15 (1976), 321–323 | DOI | MR | Zbl

[24] H. Bothe, “The ambient structure of expanding attractors. II. Solenoids in 3-manifolds”, Mathematische Nachrichten, 112 (1983), 69–102 | DOI | MR | Zbl

[25] Boju Jiang, Yi Ni, Shicheng Wang, “3-manifolds that admit knotted solenoids as attractors”, Transactions of the American Mathematical Society, 356 (2004), 43–82 | MR

[26] Jiming Ma, Bin Yu, “The realization of Smale solenoid type attractors in 3-manifolds”, Topology and its Applications, 154 (2007), 3021–3031 | DOI | MR | Zbl

[27] Jiming Ma, Bin Yu, “Genus two Smale-Williams solenoids in 3-manifolds”, Journal of Knot Theory and its Ramifications, 20 (2011), 909–926 | DOI | MR | Zbl

[28] Zhuzhoma E.V., Isaenkova N.V., “Classification of coverings of the circle”, Proceedings of the Steklov Institute of Mathematics, 278 (2012), 88–93 | DOI | MR | Zbl

[29] F. Przytycki, “Anosov endomorphisms”, Studia Mathematica, 58:3 (1977), 249–285 | DOI | MR

[30] C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, Studies in Advanced Mathematics, CRC Press, Boca Raton et al., 1998, 520 pp. | MR

[31] Kurenkov E.D., “On the existence of an endomorphism of a two-dimensional torus with a strictly invariant compressible repeller”, Journal of Middle Volga Mathematical Society, 19:1 (2017), 60–66 (In Russ.) | Zbl

[32] M. Shub, “Endomorphisms of compact differentiable manifolds”, American Journal of Mathematics, 91 (1969), 175–199 | DOI | MR | Zbl

[33] W. de Melo, S. van Strien, One-Dimensional Dynamics, Springer-Verlag, Berlin, Heidelberg, New York, 1993, 605 pp. | MR | Zbl

[34] Z. Nitecki, “Nonsingular endomorphisms of the circle”, Proceedings of Symposia in Pure Mathematics, 14 (1970), 203–220 | DOI | MR | Zbl