Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2018_3_3_a0, author = {R. Zh. Aleev and O. V. Mitina and T. A. Khanenko}, title = {Local units of integer group ring of cyclic group of order 64 for character with character field ${\mathbb Q}_{64}$}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {253--275}, publisher = {mathdoc}, volume = {3}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_3_a0/} }
TY - JOUR AU - R. Zh. Aleev AU - O. V. Mitina AU - T. A. Khanenko TI - Local units of integer group ring of cyclic group of order 64 for character with character field ${\mathbb Q}_{64}$ JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2018 SP - 253 EP - 275 VL - 3 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_3_a0/ LA - ru ID - CHFMJ_2018_3_3_a0 ER -
%0 Journal Article %A R. Zh. Aleev %A O. V. Mitina %A T. A. Khanenko %T Local units of integer group ring of cyclic group of order 64 for character with character field ${\mathbb Q}_{64}$ %J Čelâbinskij fiziko-matematičeskij žurnal %D 2018 %P 253-275 %V 3 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_3_a0/ %G ru %F CHFMJ_2018_3_3_a0
R. Zh. Aleev; O. V. Mitina; T. A. Khanenko. Local units of integer group ring of cyclic group of order 64 for character with character field ${\mathbb Q}_{64}$. Čelâbinskij fiziko-matematičeskij žurnal, Tome 3 (2018) no. 3, pp. 253-275. http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_3_a0/
[1] Aleev R.Zh., Mitina O.V., Khristenko E.A., “Congruence modulo 2 of circular units in the fields $Q_{16}$ and $Q_{32}$”, Chelyabinsk Physical and Mathematical Journal, 1:4 (2016), 8–29 (In Russ.) | MR
[2] Aleev R.Zh., Mitina O.V., Khanenko T.A., “Finding of units for integer group rings of orders $16$ and $32$ cyclic groups”, Chelyabinsk Physical and Mathematical Journal, 1:4 (2016), 30–55 (In Russ.) | MR
[3] Aleev R.Zh., Mitina O.V., Khanenko T.A., “Description of the unit group of the integer group ring of a cyclic group of order $16$”, Proceedings of Istitute of Mathematics and Mechanics, 23:4 (2017), 32–42 (In Russ.) | MR
[4] Aleev R.Zh., “Units of character fields and central units of integer group rings of finite groups”, Siberian Advances of Mathematics, 11:1 (2001), 1–33 | MR | MR | Zbl | Zbl
[5] R. Ž. Aleev, “Higman's central unit theory, units of integer group rings of finite cyclic groups and Fibonacci numbers”, International Journal of Algebra and Computation, 4:3 (1994), 309–358 | DOI | MR | Zbl
[6] Aleev R.Zh., “Central elements of integer group rings”, Algebra and Logic, 39:5 (2000), 293–300 | DOI | MR | Zbl
[7] Aleev R.Zh., Mukhamadeeva I.R., “Computation of quantum factorials and their inverses”, Chelyabinsk Physical and Mathematical Journal, 1:1 (2016), 6–15 (In Russ.) | MR
[8] Van der Varden B.L., Algebra, 2, Nauka Publ., Moscow, 1979, 624 pp. (In Russ.) | MR
[9] J. J. Liang, “On the integer basis of the maximal real subfield of a cyclotomic field”, Journal für die reine und angewandte Mathematik, Band 286/287 (1976), 223–226 | MR | Zbl
[10] The GAP Group, GAP — Groups, Algorithms, and Programming, Version 4.7.7, 2015 (accessed 15.06.2018) http://www.gap-system.org