Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2018_3_2_a0, author = {N. V. Zhukovskaya}, title = {Representation of solutions to the {Euler} type differential equation of fractional order using the fractional analogue of the {Green's} function}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {129--143}, publisher = {mathdoc}, volume = {3}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_2_a0/} }
TY - JOUR AU - N. V. Zhukovskaya TI - Representation of solutions to the Euler type differential equation of fractional order using the fractional analogue of the Green's function JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2018 SP - 129 EP - 143 VL - 3 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_2_a0/ LA - ru ID - CHFMJ_2018_3_2_a0 ER -
%0 Journal Article %A N. V. Zhukovskaya %T Representation of solutions to the Euler type differential equation of fractional order using the fractional analogue of the Green's function %J Čelâbinskij fiziko-matematičeskij žurnal %D 2018 %P 129-143 %V 3 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_2_a0/ %G ru %F CHFMJ_2018_3_2_a0
N. V. Zhukovskaya. Representation of solutions to the Euler type differential equation of fractional order using the fractional analogue of the Green's function. Čelâbinskij fiziko-matematičeskij žurnal, Tome 3 (2018) no. 2, pp. 129-143. http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_2_a0/
[1] A. Erdelyi, W. Magnus, F. Oberhettinger, F. G. Tricemi, Higher Transcendental Functions, v. I, McGraw-Hill, New York, 1953, 215 pp.
[2] Knyazev P.N., Integral transforms, Vysshaya Shkola Publ., Minsk, 1969, 197 pp. (In Russ.) | MR
[3] Bateman H., Erdelyi A., Higher transcendental functions., v. 1, McGraw-Hill, New York, 1973, 296 pp. | MR
[4] Ditkin V.A., Prudnikov A.P., Integral transforms and operational calculus, Nauka Publ., M., 1974, 544 pp. (In Russ.) | MR
[5] L. Debnath, D. Bhatta, Integral Transforms and Their Applications, Chapman Hall, Boca Raton, 2007, 700 pp. | MR
[6] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark, NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge, 2010, 968 pp. | MR | Zbl
[7] R. Gorenflo, A. A. Kilbas, F. Mainardi, S. V. Rogosin, Mittag-Leffler Functions: Related Topics and Applications, Springer, Berlin–Heidelberg, 2014, 443 pp. | MR | Zbl
[8] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science Publ., Amsterdam–Boston–Heidelberg, 2006, 541 pp. | MR | Zbl
[9] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego–Boston, 1999, 340 pp. | MR | Zbl
[10] Samko S.G., Kilbas A.A., Marichev O.I., Integrals and derivatives of fractional order and some their applications, Nauka i Tekhnika Publ., Minsk, 1987, 688 pp. (In Russ.) | MR
[11] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publ., Philadelphia, 1993, 976 pp. | MR | Zbl
[12] Marichev O.I., Method for integrals of special functions calculating, Nauka i Technika Publ., Minsk, 1978, 312 pp. (In Russ.) | MR
[13] Dzhrbashyan M.M., Integral transforms and representations of functions in a complex region, Nauka Publ., M., 1996, 672 pp. (In Russ.)
[14] K. S. Miller, B. Ross, “Fractional Green's functions”, Indian Journal of Pure and Applied Mathematics, 22:9 (1991), 763–767 | MR | Zbl