Representation of solutions to the Euler type differential equation of fractional order using the fractional analogue of the Green's function
Čelâbinskij fiziko-matematičeskij žurnal, Tome 3 (2018) no. 2, pp. 129-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

A solution to the nonhomogeneous Euler-type differential equation with Riemann — Liouville fractional derivatives on the half-axis $(0;+\infty)$ in the class ${ I}_{0+}^{\alpha}\left({ L}_{1}(0;+\infty)\right)$ of functions represented by the fractional integral of the order of $\alpha$ with a density from ${ L}_{1}(0;+\infty)$ in terms of the fractional analogue of the Green's function is given by using the direct and inverse Mellin transforms. Fractional analogues of the Green's function are constructed in the case when all roots of the characteristic polynomial are different, and also in the case when there are multiple roots among the roots of the characteristic polynomial. Theorems of solvability of the nonhomogeneous fractional differential equations of Euler-type on the half-axis $(0;+\infty)$ are formulated and proved. Special cases and examples are considered.
Keywords: fractional Riemann — Liouville integral, Riemann — Liouville fractional derivative, direct and inverse Mellin transforms, fractional analogue of the Green's function.
@article{CHFMJ_2018_3_2_a0,
     author = {N. V. Zhukovskaya},
     title = {Representation of solutions to the {Euler} type differential equation of fractional order using the fractional analogue of the {Green's} function},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {129--143},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_2_a0/}
}
TY  - JOUR
AU  - N. V. Zhukovskaya
TI  - Representation of solutions to the Euler type differential equation of fractional order using the fractional analogue of the Green's function
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2018
SP  - 129
EP  - 143
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_2_a0/
LA  - ru
ID  - CHFMJ_2018_3_2_a0
ER  - 
%0 Journal Article
%A N. V. Zhukovskaya
%T Representation of solutions to the Euler type differential equation of fractional order using the fractional analogue of the Green's function
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2018
%P 129-143
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_2_a0/
%G ru
%F CHFMJ_2018_3_2_a0
N. V. Zhukovskaya. Representation of solutions to the Euler type differential equation of fractional order using the fractional analogue of the Green's function. Čelâbinskij fiziko-matematičeskij žurnal, Tome 3 (2018) no. 2, pp. 129-143. http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_2_a0/

[1] A. Erdelyi, W. Magnus, F. Oberhettinger, F. G. Tricemi, Higher Transcendental Functions, v. I, McGraw-Hill, New York, 1953, 215 pp.

[2] Knyazev P.N., Integral transforms, Vysshaya Shkola Publ., Minsk, 1969, 197 pp. (In Russ.) | MR

[3] Bateman H., Erdelyi A., Higher transcendental functions., v. 1, McGraw-Hill, New York, 1973, 296 pp. | MR

[4] Ditkin V.A., Prudnikov A.P., Integral transforms and operational calculus, Nauka Publ., M., 1974, 544 pp. (In Russ.) | MR

[5] L. Debnath, D. Bhatta, Integral Transforms and Their Applications, Chapman Hall, Boca Raton, 2007, 700 pp. | MR

[6] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark, NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge, 2010, 968 pp. | MR | Zbl

[7] R. Gorenflo, A. A. Kilbas, F. Mainardi, S. V. Rogosin, Mittag-Leffler Functions: Related Topics and Applications, Springer, Berlin–Heidelberg, 2014, 443 pp. | MR | Zbl

[8] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science Publ., Amsterdam–Boston–Heidelberg, 2006, 541 pp. | MR | Zbl

[9] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego–Boston, 1999, 340 pp. | MR | Zbl

[10] Samko S.G., Kilbas A.A., Marichev O.I., Integrals and derivatives of fractional order and some their applications, Nauka i Tekhnika Publ., Minsk, 1987, 688 pp. (In Russ.) | MR

[11] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publ., Philadelphia, 1993, 976 pp. | MR | Zbl

[12] Marichev O.I., Method for integrals of special functions calculating, Nauka i Technika Publ., Minsk, 1978, 312 pp. (In Russ.) | MR

[13] Dzhrbashyan M.M., Integral transforms and representations of functions in a complex region, Nauka Publ., M., 1996, 672 pp. (In Russ.)

[14] K. S. Miller, B. Ross, “Fractional Green's functions”, Indian Journal of Pure and Applied Mathematics, 22:9 (1991), 763–767 | MR | Zbl