Degenerate $K$-convoluted $C$-semigroups and degenerate $K$-convoluted $C$-cosine functions in locally convex spaces
Čelâbinskij fiziko-matematičeskij žurnal, Tome 3 (2018) no. 1, pp. 90-110

Voir la notice de l'article provenant de la source Math-Net.Ru

The main purpose of this paper is to investigate degenerate $K$-convoluted $C$-semigroups and degenerate $K$-convoluted $C$-cosine functions in the setting of sequentially complete locally convex spaces. In our approach, degenerate operator families under consideration are defined locally or globally and their subgenerators are allowed to be multivalued linear operators.
Keywords: degenerate $K$-convoluted $C$-semigroup, degenerate $K$-convoluted $C$-cosine function, multivalued linear operator, subgenerator, locally convex space.
@article{CHFMJ_2018_3_1_a4,
     author = {M. Kosti\'c},
     title = {Degenerate $K$-convoluted $C$-semigroups and degenerate $K$-convoluted $C$-cosine functions in locally convex spaces},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {90--110},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_1_a4/}
}
TY  - JOUR
AU  - M. Kostić
TI  - Degenerate $K$-convoluted $C$-semigroups and degenerate $K$-convoluted $C$-cosine functions in locally convex spaces
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2018
SP  - 90
EP  - 110
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_1_a4/
LA  - en
ID  - CHFMJ_2018_3_1_a4
ER  - 
%0 Journal Article
%A M. Kostić
%T Degenerate $K$-convoluted $C$-semigroups and degenerate $K$-convoluted $C$-cosine functions in locally convex spaces
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2018
%P 90-110
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_1_a4/
%G en
%F CHFMJ_2018_3_1_a4
M. Kostić. Degenerate $K$-convoluted $C$-semigroups and degenerate $K$-convoluted $C$-cosine functions in locally convex spaces. Čelâbinskij fiziko-matematičeskij žurnal, Tome 3 (2018) no. 1, pp. 90-110. http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_1_a4/