Degenerate $K$-convoluted $C$-semigroups and degenerate $K$-convoluted $C$-cosine functions in locally convex spaces
Čelâbinskij fiziko-matematičeskij žurnal, Tome 3 (2018) no. 1, pp. 90-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main purpose of this paper is to investigate degenerate $K$-convoluted $C$-semigroups and degenerate $K$-convoluted $C$-cosine functions in the setting of sequentially complete locally convex spaces. In our approach, degenerate operator families under consideration are defined locally or globally and their subgenerators are allowed to be multivalued linear operators.
Keywords: degenerate $K$-convoluted $C$-semigroup, degenerate $K$-convoluted $C$-cosine function, multivalued linear operator, subgenerator, locally convex space.
@article{CHFMJ_2018_3_1_a4,
     author = {M. Kosti\'c},
     title = {Degenerate $K$-convoluted $C$-semigroups and degenerate $K$-convoluted $C$-cosine functions in locally convex spaces},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {90--110},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_1_a4/}
}
TY  - JOUR
AU  - M. Kostić
TI  - Degenerate $K$-convoluted $C$-semigroups and degenerate $K$-convoluted $C$-cosine functions in locally convex spaces
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2018
SP  - 90
EP  - 110
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_1_a4/
LA  - en
ID  - CHFMJ_2018_3_1_a4
ER  - 
%0 Journal Article
%A M. Kostić
%T Degenerate $K$-convoluted $C$-semigroups and degenerate $K$-convoluted $C$-cosine functions in locally convex spaces
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2018
%P 90-110
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_1_a4/
%G en
%F CHFMJ_2018_3_1_a4
M. Kostić. Degenerate $K$-convoluted $C$-semigroups and degenerate $K$-convoluted $C$-cosine functions in locally convex spaces. Čelâbinskij fiziko-matematičeskij žurnal, Tome 3 (2018) no. 1, pp. 90-110. http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_1_a4/

[1] Carroll R.W., Showalter R.E., Singular and Degenerate Cauchy Problems, Academic Press, New York, 1976, 322 pp. | MR

[2] Favini A., Yagi A., Degenerate Differential Equations in Banach Spaces, Pure and Applied Mathematics, Chapman and Hall/CR, New York, 1998 | MR

[3] Kostić M., “Some contributions to the theory of abstract degenerate Volterra integro-differential equations”, Journal of Mathematics and Statistics, 12 (2016), 65–76 | DOI | MR

[4] Melnikova I.V, Filinkov A.I., Abstract Cauchy Problems: Three Approaches, Chapman Hall/CRC, London; New York; Washington; Boca Raton, 2001, 264 pp. | MR

[5] Sviridyuk G.A., Fedorov V.E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators, Inverse and Ill-Posed Problems, no. Book 42, VSP, Utrecht; Boston, 2003, 216 pp. | MR

[6] Arendt W., Batty C.J.K., Hieber M., Neubrander F., Vector-valued Laplace Transforms and Cauchy Problems, Monographs in Mathematics, no. 96, Birkhäuser/Springer Basel AG, Basel, 2001, 539 pp. | MR

[7] DeLaubenfels R., Existence Families, Functional Calculi and Evolution Equations, Lecture Notes in Mathematics, no. 1570, Springer, New York, 1994, 200 pp. | DOI | MR

[8] Kostić M., Generalized Semigroups and Cosine Functions, Mathematical Institute SANU, Belgrade, 2011, 352 pp. | MR

[9] Xiao T.-J., Liang J., The Cauchy Problem for Higher–Order Abstract Differential Equations, Springer-Verlag, Berlin, 1998 | MR

[10] Meise R., Vogt D., Introduction to Functional Analysis, Translated from the German by M. S. Ramanujan and revised by the authors, Oxford Graduate Texts in Mathematics, Clarendon Press, New York, 1997, 448 pp. | MR

[11] Cross R., Multivalued Linear Operators, Marcel Dekker Inc., New York, 1998, 352 pp. | MR

[12] Martinez C., Sanz M., The Theory of Fractional Powers of Operators, North-Holland Mathematics Studies, no. 187, Elseiver, Amsterdam, 2001, 378 pp. | MR

[13] Kostić M., Abstract Volterra Integro-Differential Equations, CRC Press, Boca Raton, 2015, 484 pp. | MR

[14] Kostić M., “Abstract Volterra equations in locally convex spaces”, Science China Mathematics, 55 (2012), 1797–1825 | DOI | MR

[15] Kuo C.-C., “Local $K$-convoluted $C$-semigroups and abstract Cauchy problems”, Taiwanese Journal of Mathematics, 19 (2015), 1227–1245 | DOI | MR

[16] Kuo C.-C., “Local $K$-convoluted $C$-cosine functions and second order abstract Cauchy problems”, Filomat, 30 (2016), 2583–2598 | DOI | MR

[17] Li Y.-C., Shaw S.-Y., “On local $\alpha$-times integrated $C$-semigroups”, Abstract and Applied Analysis, 2007 (2007), 34890, 18 pp. | MR

[18] Tanaka N., Okazawa N., “Local $C$-semigroups and local integrated semigroups”, Proceedings of the London Mathematical Society, 61 (1990), 63–90 | DOI | MR

[19] Mei Z.-D., Peng J.-G., Gao J.-H., “Convoluted fractional $C$-semigroups and fractional abstract Cauchy problems”, Abstract and Applied Analysis, 2014 (2014), 357821, 9 pp. | MR

[20] Li Y.-C., Shaw S.-Y., “On characterization and perturbation of local $C$-semigroups”, Proceedings of the American Mathematical Society, 135 (2007), 1097–1106 | DOI | MR

[21] Shaw S.-Y., “Cosine operator functions and Cauchy problems”, Conf. Semin. Mat. Univ. Bari, 287 (2002), 1–75 | MR

[22] Wang S., “Properties of subgenerators of $C$-regularized semigroups”, Proceedings of the American Mathematical Society, 126 (1998), 453–460 | DOI | MR

[23] Arendt W., El-Mennaoui O., Keyantuo V.V., “Local integrated semigroups: evolution with jumps of regularity”, Journal of Mathematical Analysis and Applications, 186 (1994), 572–595 | DOI | MR

[24] Ciorănescu I., Lumer G., “Problèmes d'évolution régularisés par un noyan général $K(t)$, Formule de Duhamel, prolongements, théorèmes de génération”, C. R. Acad. Sci. Paris Sér. I Math., 319 (1995), 1273–1278 | MR

[25] Wang S.W., Gao M.C., “Automatic extensions of local regularized semigroups and local regularized cosine functions”, Proceedings of the American Mathematical Society, 127 (1999), 1651–1663 | DOI | MR

[26] Keyantuo V., Miana P.J., Sánchez-Lajusticia L., “Sharp extensions for convoluted solutions of abstract Cauchy problems”, Integral Equations Operator Theory, 77 (2013), 211–241 | DOI | MR

[27] Miana P.J., Poblete V., “Sharp extensions for convoluted solutions of wave equations”, Differential Integral Equations, 28 (2015), 309–332 | MR