Functional invariant for typical germs of semihyperbolic mappings
Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 4, pp. 447-455.

Voir la notice de l'article provenant de la source Math-Net.Ru

Germs of two-dimensional semihyperbolic mappings, i. e. holomorfic mappings such that one of its multiplicator is parabolic and another is hyperbolic, are considered. Functional invariants of analytic classification for such germs of the simplest kind are constructed.
Keywords: semihyperbolic map, sectorial normalization, analytic classification, functional invariant.
@article{CHFMJ_2017_2_4_a6,
     author = {P. A. Shaikhullina and S. M. Voronin},
     title = {Functional invariant for typical germs of semihyperbolic mappings},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {447--455},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_4_a6/}
}
TY  - JOUR
AU  - P. A. Shaikhullina
AU  - S. M. Voronin
TI  - Functional invariant for typical germs of semihyperbolic mappings
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2017
SP  - 447
EP  - 455
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_4_a6/
LA  - ru
ID  - CHFMJ_2017_2_4_a6
ER  - 
%0 Journal Article
%A P. A. Shaikhullina
%A S. M. Voronin
%T Functional invariant for typical germs of semihyperbolic mappings
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2017
%P 447-455
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_4_a6/
%G ru
%F CHFMJ_2017_2_4_a6
P. A. Shaikhullina; S. M. Voronin. Functional invariant for typical germs of semihyperbolic mappings. Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 4, pp. 447-455. http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_4_a6/

[1] H. Poincare, “Memoire sur les courbes definies par une equation differentielle. I”, Journal de Mathématiques Pures et Appliquées, 7 (1881), 375–422

[2] H. Poincare, “Memoire sur les courbes definies par une equation differentielle. II”, Journal de Mathématiques Pures et Appliquées, 8 (1882), 251–286

[3] H. Poincare, “Memoire sur les courbes definies par une equation differentielle. III”, Journal de Mathématiques Pures et Appliquées, 1 (1885), 167–244

[4] H. Poincare, “Memoire sur les courbes definies par une equation differentielle. IV”, Journal de Mathématiques Pures et Appliquées, 2 (1886), 151–217

[5] H. Poincare, “Sur les problem des trois corps et les equations de la dinamique”, Acta Mathematica, XIII (1890), 1–270

[6] K.L. Zigel', “On normal form of analytic differential equations in a neighborhood of equilibrium position”, Mathematics, 5:2 (1961), 119–128 (In Russ.)

[7] A.D. Bryuno, “Analytic form of differential equations”, Proceedings of the Moscow Mathematical Society, 25, 1971, 119–262 (In Russ.)

[8] V.I. Arnol'd, Additional chapters of ordinary differential equations theory, Nauka Publ., Moscow, 1978, 304 pp. (In Russ.)

[9] J. C. Yoccos, “Linearisation des germes de diffeomorphismes holomorphes de $(C$, 0)”, C. R. Acad. Sci. Paris Ser. I Math., 306:1 (1988), 55–58

[10] S.M. Voronin, “Analytic classification of germs of conformal mappings $(\mathbb{C}, 0) \to (\mathbb{C}, 0)$ with identity linear part”, Functional Analysis and its Applications, 15:1 (1981), 1–13

[11] J. Ecalle, Sur les fonctions resurgentes, Publ. Math. d'Orsay, Orsay, 1981

[12] J. Martinet, J. P. Ramis, “Problème de modules pour des équations différentielles non linéaires du premier ordre”, Inst. Hautes Études Sci. Publ Math., 1982, no. 55, 63–164

[13] J. Martinet, J. P. Ramis, “Classification analytique des équations différentielles non linéaires resonnantes du premier ordre”, Ann. Sci. École norm. supér, 16:4 (1983), 571–621

[14] P.A. Shayhullina, “Formal classification for typical germs semihyperbolic mappings”, Mathematical Notes of North-Eastern Federal University, 22:4 (2015), 79–90 (In Russ.)

[15] S.M. Voronin, P.A. Fomina, “Sectorial normalization of semihyperbolic mappings”, Bulletin of Chelyabinsk State University, 28 (2013), 94–113 (In Russ.)

[16] B.V. Shabat, Introduction in complex analysis, Nauka Publ., Moscow, 1969, 577 pp. (In Russ.)