Zeros distribution of a Mittag-Leffler type entire function with applications to the theory of inverse problems
Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 4, pp. 430-446.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is a general survey. We discuss the problem of the zeros distribution for one particular function of the Mittag-Leffler type, which occurs in the theory of inverse problems for the evolution differential equations. Accurate data about the location of zeros in the complex plane is obtained by analytic tools. An explicit representation of zeros is specified with the use of the special Lambert $W$-function. We present the convenient approximate formulas for the zeros calculation. All results are confirmed by the numerical calculations. The relationship between the obtained relations and the investigation of the natural inverse problem for evolution equation in a Banach space is demonstrated. The conditions for the well-posedness of the problem are expressed in terms of zeros distribution of the studied entire function. As a result, for the inverse problem the convenient sufficient conditions for the existence and uniqueness of solution is proposed and, moreover, a constructive algorithm for the finding of a solution is justified.
Keywords: Mittag-Leffler type entire function, distribution of zeros, evolution equation, linear inverse problem.
@article{CHFMJ_2017_2_4_a5,
     author = {A. V. Karev and I. V. Tikhonov},
     title = {Zeros distribution of a {Mittag-Leffler} type entire function with applications to the theory of inverse problems},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {430--446},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_4_a5/}
}
TY  - JOUR
AU  - A. V. Karev
AU  - I. V. Tikhonov
TI  - Zeros distribution of a Mittag-Leffler type entire function with applications to the theory of inverse problems
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2017
SP  - 430
EP  - 446
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_4_a5/
LA  - ru
ID  - CHFMJ_2017_2_4_a5
ER  - 
%0 Journal Article
%A A. V. Karev
%A I. V. Tikhonov
%T Zeros distribution of a Mittag-Leffler type entire function with applications to the theory of inverse problems
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2017
%P 430-446
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_4_a5/
%G ru
%F CHFMJ_2017_2_4_a5
A. V. Karev; I. V. Tikhonov. Zeros distribution of a Mittag-Leffler type entire function with applications to the theory of inverse problems. Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 4, pp. 430-446. http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_4_a5/

[1] A.V. Karev, I.V. Tikhonov, “On the distribution of zeros of Mittag-Leffler type entire function which is important for the inverse problems theory”, Some actual problems of modern mathematics and mathematical education. Herzen readings – 2017, Proceedings of the scientific conference (April 10–14, 2017. St.-Petersburg), 2017, 122–128 (In Russ.)

[2] A.Yu. Popov, “The spectral values of a boundary value problem and the zeros of Mittag-Leffer functions”, Differential Equations, 38:5 (2002), 642–653

[3] I.V. Tikhonov, Yu.S. Eidelman, “An inverse problem for a differential equation in a Banach space and the distribution of zeros of an entire Mittag-Leffler function”, Differential Equations, 38:5 (2002), 669–677.

[4] I.V. Tikhonov, “A generalized Ward problem for abstract differential equations”, Differential Equations, 41:3 (2005), 340–351

[5] A.Yu. Popov, A.M. Sedletskii, “Distribution of roots of Mittag-Leffler functions”, Journal of Mathematical Sciences, 40 (2011), 3–171

[6] G. Pólya, “Über die Nullstelen gewisser ganzer Funktionen”, Mathematische Zeitschrift, 2:3/4 (1918), 352–383

[7] R. Bellman, K.L. Cooke, Differential-Difference Equations, Academic Press, New York, London, 1963, XVI+462 pp.

[8] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, D. E. Knuth, “On the Lambert W function”, Advances in Computational Mathematics, 5 (1996), 329–360

[9] A.E. Dubinov, I.D. Dubinova, S.K. Saikov, Lambert W function and its applications in mathematical problems of physics, Publishing House of RFNC–VNIIEF, Sarov, 2006, 159 pp. (In Russ.)

[10] A.M. Denisov, Introduction to the theory of inverse problems, Publishing House of Moscow University, Moscow, 1994, 206 pp. (In Russ.)

[11] A. I. Prilepko, D. G. Orlovsky, I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, N. Y., Basel, 2000, 709 pp.

[12] A.I. Prilepko, I.V. Tikhonov, “Recovery of the nonhomogeneous term in an abstract evolution equation”, Russian Academy of Sciences. Izvestiya: Mathematics, 44:2 (1995), 373–394

[13] I.V. Tikhonov, Yu.S. Eidelman, “Problems on correctness of ordinary and inverse problems for evolutionary equations of a special form”, Mathematical Notes, 56:2 (1994), 830–839

[14] I.V. Tikhonov, Yu.S. Eidelman, “Uniqueness criterion in an inverse problem for an abstract differential equation with nonstationary inhomogeneous term”, Mathematical Notes, 77:2 (2005), 246–262

[15] S.G. Krein, Linear Differential Equations in Banach Space, American Mathematical Society, 1972, 390 pp.

[16] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer Verlag, N. Y., 1983, 279 pp.

[17] E. Hille, R. Phillips, Functional Analysis and Semi-groups, American Mathematical Society, 1957, 808 pp.

[18] B.Ya. Levin, Distribution of entire functions zeros, GITTL Publ., Moscow, 1956, 632 pp. (In Russ.)