Dirichlet problem for fractional differential equation with constant coefficients
Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 4, pp. 401-411.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Dirichlet problem is investigated for the ordinary differential equation with the Dzrbashyan and Nersesyan fractional differentiation operators. The solution is found in explicit form in terms of the Wright function. The existence and uniqueness solution theorem is proved. The Green function of the considered problem is constructed.
Keywords: Dirichlet problem, ordinary differential equation, fractional differentiation, Dzhrbashyan and Neresyan operator, Green's function.
@article{CHFMJ_2017_2_4_a2,
     author = {F.T. Bogatyreva},
     title = {Dirichlet problem for fractional differential equation with constant coefficients},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {401--411},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_4_a2/}
}
TY  - JOUR
AU  - F.T. Bogatyreva
TI  - Dirichlet problem for fractional differential equation with constant coefficients
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2017
SP  - 401
EP  - 411
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_4_a2/
LA  - ru
ID  - CHFMJ_2017_2_4_a2
ER  - 
%0 Journal Article
%A F.T. Bogatyreva
%T Dirichlet problem for fractional differential equation with constant coefficients
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2017
%P 401-411
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_4_a2/
%G ru
%F CHFMJ_2017_2_4_a2
F.T. Bogatyreva. Dirichlet problem for fractional differential equation with constant coefficients. Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 4, pp. 401-411. http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_4_a2/

[1] M.M. Dzhrbashyan, A.B. Nersesyan, “Fractional derivatives and the Cauchy problem for differential equations of fractional order”, News of Academy of Sciences of Armenian SSR. Mathematics, 3:1 (1968), 3–28 (In Russ.)

[2] A.M. Nakhushev, Fractional calculus and its applications, Fizmatlit Publ., Moscow, 2003, 272 pp. (In Russ.)

[3] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993, 384 pp.

[4] F.T. Bogatyreva, “Initial value problem for fractional order equation with constant coefficients”, Bulletin of KRASEC. Physical and Mathematical Sciences, 4-1:16 (2016), 21–26 (In Russ.)

[5] M.M. Dzhrbashyan, “Boundary value problem for fractional order differential operator of Sturm — Liuville type”, News of Academy of Sciences of Armenian SSR, 1970, no. 2, 71–96 (In Russ.)

[6] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, Boston, 1999, 340 pp.

[7] A.V. Pskhu, “Initial-value problem for a linear ordinary differential equation of noninteger order”, Sbornik: Mathematics, 202:4 (2011), 571–582

[8] L.Kh. Gadzova, “Dirichlet and Neumann problems for a fractional ordinary differential equation with constant coefficients”, Differential Equations, 51:12 (2015), 1556–1562

[9] E. M. Wright, “On the coefficients of power series having exponential singularities”, Journal of London Mathematical Society, 8:1 (1933), 71–79