Differential game with a target set in the ring form and with an integral constraint of the first player control
Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 4, pp. 388-400.

Voir la notice de l'article provenant de la source Math-Net.Ru

One-type game, in which the first player has an integral control constraint, the second player has a geometric constraint, is considered. The goal of the first player is to hit the area in the form of a ring located around the opponent at a fixed moment of time $p$ with the minimum resource reserve. The second player's goal is to avoid this hit. The problem of resource minimization in such a game was solved.
Keywords: differential game, integral control constraint, geometric control constraint, ring form target set.
@article{CHFMJ_2017_2_4_a1,
     author = {S. R. Aleeva and G. R. Berezovskaya},
     title = {Differential game with a target set in the ring form and with an integral constraint of the first player control},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {388--400},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_4_a1/}
}
TY  - JOUR
AU  - S. R. Aleeva
AU  - G. R. Berezovskaya
TI  - Differential game with a target set in the ring form and with an integral constraint of the first player control
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2017
SP  - 388
EP  - 400
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_4_a1/
LA  - ru
ID  - CHFMJ_2017_2_4_a1
ER  - 
%0 Journal Article
%A S. R. Aleeva
%A G. R. Berezovskaya
%T Differential game with a target set in the ring form and with an integral constraint of the first player control
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2017
%P 388-400
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_4_a1/
%G ru
%F CHFMJ_2017_2_4_a1
S. R. Aleeva; G. R. Berezovskaya. Differential game with a target set in the ring form and with an integral constraint of the first player control. Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 4, pp. 388-400. http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_4_a1/

[1] N.N. Krasovskii , A.I. Subbotin , Positional differential games, Nauka Publ., Moscow, 1974, 456 pp. (In Russ.)

[2] V.I. Ukhobotov, “One-type differential game with a terminal set in the form of a ring”, Some problems of dynamics and control, collection of scientific papers, ed. V.D. Batukhtin, Chelyabinsk State University, Chelyabinsk, 2005, 108–123 (In Russ.)

[3] V.I. Ukhobotov, I.V. Izmest'yev, “One-type differential games with a terminal set in the form of a ring”, Systems dynamics and control processes, Proceedings of the International Conference, dedicated to the 90th anniversary of the Acad. N.N. Krasovskii (Yekaterinburg, September 15–29, 2014), Publishing House of the UIC UPI, Yekaterinburg, 2015, 325–332 (In Russ.)

[4] S.R. Aleeva, V.I. Ukhobotov, “One-type game with an integral constraint of the first player”, Bulletin of Cheljabinsk University, 1:4 (1999), 16–29 (In Russ.)

[5] S.R. Aleeva, Modelling of the guaranteed result in traffic control problems with integral constraints in the presence of interference effects, PhD thesis, Cheljabinsk State University, Chelyabinsk, 2002, 145 pp. (In Russ.)

[6] S.R. Aleeva, “On a differential game with an integral constraint” (Chelyabinsk, 19–22 September, 2006), Mathematics. Mechanics. Informatics, 2007, Proceedings of the scientific conference, 7–13, Chelyabinsk State University, Chelyabinsk (In Russ.)

[7] S.R. Aleeva, “Guaranteed results in the problem of the distance minimizing with an integral constraint”, Bulletin of Cheljabinsk State University, 26:280 (2012), 41–48 (In Russ.)

[8] A.A. Lyusternik, V.I. Sobolev, Elements of functional analysis, Nauka Publ., Moscow, 1965, 520 pp. (In Russ.)

[9] F. Riss, B. Sekefalvi-Nad’, Functional analysis, Ungar Publ., New York, 1955

[10] A.D. Ioffe, V.M. Tikhomirov, The theory of extremal problems, Nauka Publ., Moscow, 1974, 480 pp. (In Russ.)

[11] A.N. Kolmogorov, S.V. Fomin, Elements of the function theory and functional analysis, Nauka Publ., Moscow, 1972, 496 pp. (In Russ.)