Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2017_2_3_a4, author = {O. Kh. Masaeva}, title = {The {Dirichlet} problem for the generalized {Laplace} equation with fractional derivative}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {312--322}, publisher = {mathdoc}, volume = {2}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_3_a4/} }
TY - JOUR AU - O. Kh. Masaeva TI - The Dirichlet problem for the generalized Laplace equation with fractional derivative JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2017 SP - 312 EP - 322 VL - 2 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_3_a4/ LA - ru ID - CHFMJ_2017_2_3_a4 ER -
O. Kh. Masaeva. The Dirichlet problem for the generalized Laplace equation with fractional derivative. Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 3, pp. 312-322. http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_3_a4/
[1] A.M. Nakhushev, Fractional calculus and its applications, Fizmatlit Publ., Moscow, 2003, 272 pp. (In Russ.)
[2] O. Kh. Masaeva, “Dirichlet problem for the generalized Laplace equation with the Caputo derivative”, Differential Equations, 48:3 (2012), 442–446 | DOI | MR | Zbl
[3] O. Kh. Masaeva, “The uniqueness of solution of the Dirichlet problem for the equation with fractional Laplace operator in the main part”, News of Kabardino-Balkarian Scientific Center of RAS, 2:6 (68) (2015), 127–130 (In Russ.)
[4] A.V. Pskhu, “An analogue of the Schwartz formula for the Cauchy — Riemann system of fractional order”, Modern methods in the theory of boundary value problems: proceedings of the Voronezh Spring Mathematical School «Pontryagin Readings — XIII», Voronezh, 2002, 127 (In Russ.)
[5] G. P. Lopushanska, “Basic boundary value problems for one equation with fractional derivatives”, Ukrainian Mathematical Journal, 51:1 (1999), 51–65 | DOI | MR
[6] B. Kh. Turmetov, B. T. Torebek, “On solvability of some boundary value problems for a fractional analogue of the Helmholtz equation”, New York Journal of Mathematics, 20 (2014), 1237–1251 | MR | Zbl
[7] E. M. Wright, “On the coefficients of power series having exponential singularities”, Journal of London Mathematical Society, 8:29 (1933), 71–79 | DOI | MR | Zbl
[8] E. M. Wright, “The generalized Bessel function of order greater than one”, The Quarterly Journal of Mathematics, 11 (1940), 36–48 | DOI | MR
[9] A.V. Pskhu, Fractional partial differential equations, Nauka Publ., Moscow, 2005, 199 pp. (In Russ.) | MR
[10] M.M. Dzhrbashyan, Integral transforms and representations of functions in complex domain, Nauka Publ., Moscow, 1966, 672 pp. (In Russ.) | MR
[11] M.A. Lavrent’ev, B.V. Shabat, Methods for the theory of functions of a complex variable, Nauka Publ., Moscow, 1987, 688 pp. (In Russ.) | MR
[12] A.M. Nakhushev, “On the positivity of continuous and discrete differentiation and integration operators that are very important in fractional calculus and in the theory of equations of mixed type”, Differential Equations, 34:1 (1998), 103–112 (In Russ.) | MR | Zbl