The Dirichlet problem for the generalized Laplace equation with fractional derivative
Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 3, pp. 312-322.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper the Dirichlet problem for the generalized Laplace equation with fractional Riemann — Liouville derivative with respect to one of the two independent variables in the upper half-plane is investigated. The representation of the solution is found by the method of integral transformation with the Wright function in the core and the uniqueness theorem for the solution of the problem is proved by the method abc.
Keywords: Riemann — Liouville fractional derivative, Wright function, generalized Laplace equation with fractional derivative, Dirichlet boundary value problem.
@article{CHFMJ_2017_2_3_a4,
     author = {O. Kh. Masaeva},
     title = {The {Dirichlet} problem for the generalized {Laplace} equation with fractional derivative},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {312--322},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_3_a4/}
}
TY  - JOUR
AU  - O. Kh. Masaeva
TI  - The Dirichlet problem for the generalized Laplace equation with fractional derivative
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2017
SP  - 312
EP  - 322
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_3_a4/
LA  - ru
ID  - CHFMJ_2017_2_3_a4
ER  - 
%0 Journal Article
%A O. Kh. Masaeva
%T The Dirichlet problem for the generalized Laplace equation with fractional derivative
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2017
%P 312-322
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_3_a4/
%G ru
%F CHFMJ_2017_2_3_a4
O. Kh. Masaeva. The Dirichlet problem for the generalized Laplace equation with fractional derivative. Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 3, pp. 312-322. http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_3_a4/

[1] A.M. Nakhushev, Fractional calculus and its applications, Fizmatlit Publ., Moscow, 2003, 272 pp. (In Russ.)

[2] O. Kh. Masaeva, “Dirichlet problem for the generalized Laplace equation with the Caputo derivative”, Differential Equations, 48:3 (2012), 442–446 | DOI | MR | Zbl

[3] O. Kh. Masaeva, “The uniqueness of solution of the Dirichlet problem for the equation with fractional Laplace operator in the main part”, News of Kabardino-Balkarian Scientific Center of RAS, 2:6 (68) (2015), 127–130 (In Russ.)

[4] A.V. Pskhu, “An analogue of the Schwartz formula for the Cauchy — Riemann system of fractional order”, Modern methods in the theory of boundary value problems: proceedings of the Voronezh Spring Mathematical School «Pontryagin Readings — XIII», Voronezh, 2002, 127 (In Russ.)

[5] G. P. Lopushanska, “Basic boundary value problems for one equation with fractional derivatives”, Ukrainian Mathematical Journal, 51:1 (1999), 51–65 | DOI | MR

[6] B. Kh. Turmetov, B. T. Torebek, “On solvability of some boundary value problems for a fractional analogue of the Helmholtz equation”, New York Journal of Mathematics, 20 (2014), 1237–1251 | MR | Zbl

[7] E. M. Wright, “On the coefficients of power series having exponential singularities”, Journal of London Mathematical Society, 8:29 (1933), 71–79 | DOI | MR | Zbl

[8] E. M. Wright, “The generalized Bessel function of order greater than one”, The Quarterly Journal of Mathematics, 11 (1940), 36–48 | DOI | MR

[9] A.V. Pskhu, Fractional partial differential equations, Nauka Publ., Moscow, 2005, 199 pp. (In Russ.) | MR

[10] M.M. Dzhrbashyan, Integral transforms and representations of functions in complex domain, Nauka Publ., Moscow, 1966, 672 pp. (In Russ.) | MR

[11] M.A. Lavrent’ev, B.V. Shabat, Methods for the theory of functions of a complex variable, Nauka Publ., Moscow, 1987, 688 pp. (In Russ.) | MR

[12] A.M. Nakhushev, “On the positivity of continuous and discrete differentiation and integration operators that are very important in fractional calculus and in the theory of equations of mixed type”, Differential Equations, 34:1 (1998), 103–112 (In Russ.) | MR | Zbl