Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2017_2_3_a3, author = {M. O. Mamchuev}, title = {Boundary value problem for a linear system of equations with the partial derivatives of fractional order}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {295--311}, publisher = {mathdoc}, volume = {2}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_3_a3/} }
TY - JOUR AU - M. O. Mamchuev TI - Boundary value problem for a linear system of equations with the partial derivatives of fractional order JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2017 SP - 295 EP - 311 VL - 2 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_3_a3/ LA - ru ID - CHFMJ_2017_2_3_a3 ER -
%0 Journal Article %A M. O. Mamchuev %T Boundary value problem for a linear system of equations with the partial derivatives of fractional order %J Čelâbinskij fiziko-matematičeskij žurnal %D 2017 %P 295-311 %V 2 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_3_a3/ %G ru %F CHFMJ_2017_2_3_a3
M. O. Mamchuev. Boundary value problem for a linear system of equations with the partial derivatives of fractional order. Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 3, pp. 295-311. http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_3_a3/
[1] A.M. Nakhushev, Fractional calculus and its applications, Fizmatlit Publ., Moscow, 2003, 272 pp. (In Russ.)
[2] Ph. Clement, G. Gripenberg, S.-O. Londen, “Schauder estimates for equations with fractional derivatives”, Transaction of the American Mathematical Society, 352:5 (2000), 2239–2260 | DOI | MR | Zbl
[3] Ph. Clement, G. Gripenberg, S.-O. Londen, “Hölder regularity for a linear fractional evolution equation”, Progr. Nonlinear Differential Equations and Their Applications, 35 (1999), 62–82 | MR
[4] A.V. Pskhu, “Solution of a boundary value problem for a fractional partial differential equation”, Differential Equation, 39:8 (2003), 1150–1158 | DOI | MR | Zbl
[5] A.V. Pskhu, Fractional partial differential equations, Nauka Publ., Moscow, 2005, 199 pp. (In Russ.) | MR
[6] M. O. Mamchuev, “A boundary value problem for a first-order equation with a partial derivative of a fractional order with variable coefficients”, Reports of Circassian International Academy of Sciences, 11:1 (2009), 32–35 (In Russ.)
[7] M. O. Mamchuev, “Cauchy problem in non-local statement for first order equation with partial derivatives of fractional order with variable coefficients”, Reports of Circassian International Academy of Sciences, 11:2 (2009), 21–24 (In Russ.)
[8] M. O. Mamchuev, Boundary value problems for fractional partial differential equations and their systems, Publishing house KBSC of RAS, Nalchik, 2013, 200 pp. (In Russ.)
[9] M. O. Mamchuev, “Boundary value problem for a system of fractional partial differential equations”, Differential Equations, 44:12 (2008), 1737–1749 | DOI | MR | Zbl
[10] M. O. Mamchuev, “Fundamental solution of a system of fractional partial differential equations”, Differential Equations, 46:8 (2010), 1123–1134 | DOI | MR | Zbl
[11] M. O. Mamchuev, “Cauchy problem in non-local statement for a system of fractional partial differential equations”, Differential Equations, 48:3 (2012), 354–361 | DOI | MR | Zbl
[12] M. O. Mamchuev, “Mixed problem for loaded system of equations with Riemann — Liouville derivatives”, Mathematical notes, 97:3 (2015), 412–422 | DOI | DOI | MR | Zbl
[13] M. O. Mamchuev, “Mixed problem for a system of fractional partial differential equations”, Differential Equations, 52:1 (2016), 133–138 | DOI | DOI | MR | Zbl
[14] E. M. Wright, “On the coefficients of power series having exponential singularities”, Journal of London Mathematical Society, 8:29 (1933), 71–79. \vspace{-3mm} | DOI | MR | Zbl
[15] E. M. Wright, “The asymptotic expansion of the generalized Bessel function”, Proceedings of London Mathematical Society. Ser. II, 38 (1934), 257–270 | MR
[16] R. Gorenflo, Yu. Luchko, F. Mainardi, “Analytical properties and applications of the Wright function”, Fractional Calculus and Applied Analysis, 2:4 (1999), 383–414 | MR | Zbl