Complementary representation of polynomials over finite fields
Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 2, pp. 199-209

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper it is proved that every polynomial over a finite field is a generating polynomial of the wavelet-code.
Keywords: finite field, wavelet-code, biorthogonal transform.
@article{CHFMJ_2017_2_2_a5,
     author = {A. A. Soloviev},
     title = {Complementary representation of polynomials over finite fields},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {199--209},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_2_a5/}
}
TY  - JOUR
AU  - A. A. Soloviev
TI  - Complementary representation of polynomials over finite fields
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2017
SP  - 199
EP  - 209
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_2_a5/
LA  - ru
ID  - CHFMJ_2017_2_2_a5
ER  - 
%0 Journal Article
%A A. A. Soloviev
%T Complementary representation of polynomials over finite fields
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2017
%P 199-209
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_2_a5/
%G ru
%F CHFMJ_2017_2_2_a5
A. A. Soloviev. Complementary representation of polynomials over finite fields. Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 2, pp. 199-209. http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_2_a5/