Complementary representation of polynomials over finite fields
Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 2, pp. 199-209.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper it is proved that every polynomial over a finite field is a generating polynomial of the wavelet-code.
Keywords: finite field, wavelet-code, biorthogonal transform.
@article{CHFMJ_2017_2_2_a5,
     author = {A. A. Soloviev},
     title = {Complementary representation of polynomials over finite fields},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {199--209},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_2_a5/}
}
TY  - JOUR
AU  - A. A. Soloviev
TI  - Complementary representation of polynomials over finite fields
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2017
SP  - 199
EP  - 209
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_2_a5/
LA  - ru
ID  - CHFMJ_2017_2_2_a5
ER  - 
%0 Journal Article
%A A. A. Soloviev
%T Complementary representation of polynomials over finite fields
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2017
%P 199-209
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_2_a5/
%G ru
%F CHFMJ_2017_2_2_a5
A. A. Soloviev. Complementary representation of polynomials over finite fields. Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 2, pp. 199-209. http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_2_a5/

[1] F.J. MacWilliams , N.J.A. Sloane, The theory of error-correcting codes, Svyaz' Publ., Moscow, 1979, 744 pp. (In Russ.)

[2] F.\;Fekri, S. W.\;McLaughlin, R. M.\;Mersereau, R. W.\;Schafer, “Double circulant self-dual codes using finite-field wavelet transforms”, Applied Algebra, Algebraic Algorithms and Error Correcting Codes Conf. (Honolulu, HI, 1999), Lecture Notes in Computer Sciences, 1719, 1999, 355–364 | DOI | MR | Zbl

[3] F.\;Fekri, S. W.\;McLaughlin, R. M.\;Mersereau, R. W.\;Schafer, Error Control Coding Using Finite-Field Wavelet Transforms, Center for Signal Image Processing, Georgia Inst. of Technology, Atlante, 1999

[4] D. V. Chernikov, “Error-correcting codes using biorthogonal filter banks”, Siberian Electronic Mathematical Rep., 12 (2015), 704–713 | Zbl

[5] I.\;Doubechies, W.\;Sweldens, “Factoring wavelet transforms into lifting steps”, The J. of Fourier Analysis and Applications, 4:3 (1998), 247–269 | DOI | MR

[6] A.A. Soloviev, D.V. Chernikov, “Biorthogonal wavelet code in fields of characteristic two”, Chelyabinsk Physical and Mathematical Journal, 2:1 (2017), 66–79 (In Russ.)