The upper bound of the remainder of power series with positive coefficients of a special class
Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 2, pp. 193-198.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of estimating the remainder of a power series with special positive coefficients is studied. The established results are used in estimating the deviations of Bernstein polynomials from a symmetric module.
Keywords: power series, remainder of a series, Bernstein polynomials.
@article{CHFMJ_2017_2_2_a4,
     author = {A. Yu. Popov},
     title = {The upper bound of the remainder of power series with positive coefficients of a special class},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {193--198},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_2_a4/}
}
TY  - JOUR
AU  - A. Yu. Popov
TI  - The upper bound of the remainder of power series with positive coefficients of a special class
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2017
SP  - 193
EP  - 198
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_2_a4/
LA  - ru
ID  - CHFMJ_2017_2_2_a4
ER  - 
%0 Journal Article
%A A. Yu. Popov
%T The upper bound of the remainder of power series with positive coefficients of a special class
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2017
%P 193-198
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_2_a4/
%G ru
%F CHFMJ_2017_2_2_a4
A. Yu. Popov. The upper bound of the remainder of power series with positive coefficients of a special class. Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 2, pp. 193-198. http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_2_a4/

[1] I.V. Tikhonov, V.B. Sherstyukov, “The module function approximation by Bernstein polynomials”, Bulletin of Chelyabinsk State University, 26 (2012), 6–40 (In Russ.)

[2] I.V. Tikhonov, V.B. Sherstyukov, M.A. Petrosova, “Bernstein Polynomials: the old and the new”, Mathematical forum. Research on mathematical analysis, pt. 1, v. 8, VNTs RAN Publ., Vladikavkaz, 2014, 126–175 (In Russ.)

[3] D. D. Adamović, “Sur la convergence des rapports de la somme partielle au terme général et du reste ou terme général d'une série réelle ou complexe”, Publ. de l'inst. mathématique. N. S., 15, no. 29, 1973, 5–20 | MR | Zbl