The upper bound of the remainder of power series with positive coefficients of a special class
Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 2, pp. 193-198
Cet article a éte moissonné depuis la source Math-Net.Ru
The problem of estimating the remainder of a power series with special positive coefficients is studied. The established results are used in estimating the deviations of Bernstein polynomials from a symmetric module.
Keywords:
power series, remainder of a series, Bernstein polynomials.
@article{CHFMJ_2017_2_2_a4,
author = {A. Yu. Popov},
title = {The upper bound of the remainder of power series with positive coefficients of a special class},
journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
pages = {193--198},
year = {2017},
volume = {2},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_2_a4/}
}
TY - JOUR AU - A. Yu. Popov TI - The upper bound of the remainder of power series with positive coefficients of a special class JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2017 SP - 193 EP - 198 VL - 2 IS - 2 UR - http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_2_a4/ LA - ru ID - CHFMJ_2017_2_2_a4 ER -
A. Yu. Popov. The upper bound of the remainder of power series with positive coefficients of a special class. Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 2, pp. 193-198. http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_2_a4/
[1] I.V. Tikhonov, V.B. Sherstyukov, “The module function approximation by Bernstein polynomials”, Bulletin of Chelyabinsk State University, 26 (2012), 6–40 (In Russ.)
[2] I.V. Tikhonov, V.B. Sherstyukov, M.A. Petrosova, “Bernstein Polynomials: the old and the new”, Mathematical forum. Research on mathematical analysis, pt. 1, v. 8, VNTs RAN Publ., Vladikavkaz, 2014, 126–175 (In Russ.)
[3] D. D. Adamović, “Sur la convergence des rapports de la somme partielle au terme général et du reste ou terme général d'une série réelle ou complexe”, Publ. de l'inst. mathématique. N. S., 15, no. 29, 1973, 5–20 | MR | Zbl