Calculation of the power series coefficients of a monodromy map in the Maple environment
Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 2, pp. 181-192.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article proposes a computer algorithm in Maple for the coefficients calculation of the asymptotic series for the monodromic singular point monodromy transformation of a vector field in the plane, when its Newton diagram consists of one non-degenerate edge. The coefficients of the asymptotic series are expressed in terms of improper integrals for functions, which are based on a Taylor decomposition of the vector field at the singular point. In view of the complexity of the integrands in these integrals their computing in the environment of Maple is impossible. In this paper a method of the calculation of these coefficients using the solving of some differential equations is proposed. The program in the environment of Maple, which calculates these coefficients, is offered. An example of the computing is given.
Keywords: monodromic singular point, focus, center, monodromy transformation, Newton diagram, Maple.
@article{CHFMJ_2017_2_2_a3,
     author = {N. B. Medvedeva and M. A. Sosnovskaya},
     title = {Calculation of the power series coefficients of a monodromy map in the {Maple} environment},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {181--192},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_2_a3/}
}
TY  - JOUR
AU  - N. B. Medvedeva
AU  - M. A. Sosnovskaya
TI  - Calculation of the power series coefficients of a monodromy map in the Maple environment
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2017
SP  - 181
EP  - 192
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_2_a3/
LA  - ru
ID  - CHFMJ_2017_2_2_a3
ER  - 
%0 Journal Article
%A N. B. Medvedeva
%A M. A. Sosnovskaya
%T Calculation of the power series coefficients of a monodromy map in the Maple environment
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2017
%P 181-192
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_2_a3/
%G ru
%F CHFMJ_2017_2_2_a3
N. B. Medvedeva; M. A. Sosnovskaya. Calculation of the power series coefficients of a monodromy map in the Maple environment. Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 2, pp. 181-192. http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_2_a3/

[1] V.I. Arnol'd, Yu.S. Il'yashenko, “Ordinary differential equations — 1”, Results of science and technology. Contemporary problems of mathematics. Fundamental directions, 1 (1985), 7–149 (In Russ.) | Zbl

[2] N.B. Medvedeva, “Principal term of the monodromy transformation of a monodromic singular point is linear”, Siberian Mathematical Journal, 33:2 (1992), 280–288 | DOI | MR | Zbl

[3] N.B. Medvedeva, E.V. Mazaeva, “Focus sufficient condition for a monodromic singular point”, Transactions of Moscow Mathematical Society, 63, 2002, 87–114 (In Russ.) | MR | Zbl

[4] A.S. Voronin, N.B. Medvedeva, “Stability of monodromic singular points with a fixed Newton diagram”, Bulletin of Udmurt University. Mathematics. Mechanics. Computer Science, 2009, no. 3, 34–49 (In Russ.)

[5] A.S. Voronin, N.B. Medvedeva, “Asymptotics of the monodromy transformation in the case of two even edges in the Newton diagram”, Bulletin of Chelyabinsk State University, 27 (2011), 12–26 (In Russ.)

[6] A.S. Voronin, N.B. Medvedeva, “Asymptotics of the monodromy transformation in certain classes of monodromy germs”, Izvestiya: Mathematics, 2013, no. 2, 253–270 | DOI | DOI | MR | MR | Zbl

[7] H. Dulac, “Sur les cycles limites”, Bulletin de la Societe Mathematique de France, 51 (1923), 45–188 (In French) | DOI | MR | MR | Zbl

[8] Yu.S. Il'yashenko, “Dulac's memoir "On limit cycles" and related problems of the local theory of differential equations”, Russian Mathematical Surveys, 40:6 (1985), 1–50 | DOI | MR

[9] N.B. Medvedeva, “On analytic insolubility of the stability problem on the plane”, Russian Mathematical Surveys, 68:5 (2013), 923–950 | DOI | DOI | MR | Zbl

[10] J. Hadamard, Lectures on Cauchy's Problem in Linear Partial Differential Equations, Dover Publ., Mineola, 2003 | MR | MR

[11] N.B. Medvedeva, “Asimptoticheskoye razlozheniye preobrazovaniya monodromii”, Chelyabinsk Physical and Mathematical Journal, 1:1 (2016), 59–72 (In Russ.) | MR

[12] A.D. Bryuno, Local method of nonlinear analysis for differential equations, Nauka Publ., M., 1979 (In Russ.) | MR

[13] V.P. Varin, “Poincare map for some polynomial systems of differential equations”, Sbornik: Mathematics, 195:7 (2004), 917–934 | DOI | DOI | MR | Zbl

[14] F.S. Berezovskaya , N.B. Medvedeva, “Monodromy transformation asymptotics of a singular point with a fixed Newton diagram”, Transactions of Petrovskiy workshop, 15, 1991, 156–177 (In Russ.)

[15] N.B. Medvedeva, “On the analytic solvability of the problem of distinguishing between center and focus”, Proceedings of the Steklov Institute of Mathematics, 254:1 (2006), 7–93 | DOI | MR | Zbl