Weighted distribution corresponding to quadratic form with complex coefficients
Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 1, pp. 88-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

Certain types of weighted distributions associated with quadratic form with complex coefficients are considered. These distributions adopted for the work with differential operators containing the Bessel operator. The formulas are obtained for the fundamental solution of the iterated ultra-hyperbolic equation with Bessel operators instead of the second derivatives.
Keywords: weighted distributions, fundamental solution, Bessel operator, $B$-ultra-hyperbolic operator.
@article{CHFMJ_2017_2_1_a8,
     author = {E. L. Shishkina},
     title = {Weighted distribution corresponding to quadratic form with complex coefficients},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {88--98},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_1_a8/}
}
TY  - JOUR
AU  - E. L. Shishkina
TI  - Weighted distribution corresponding to quadratic form with complex coefficients
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2017
SP  - 88
EP  - 98
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_1_a8/
LA  - ru
ID  - CHFMJ_2017_2_1_a8
ER  - 
%0 Journal Article
%A E. L. Shishkina
%T Weighted distribution corresponding to quadratic form with complex coefficients
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2017
%P 88-98
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_1_a8/
%G ru
%F CHFMJ_2017_2_1_a8
E. L. Shishkina. Weighted distribution corresponding to quadratic form with complex coefficients. Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 1, pp. 88-98. http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_1_a8/

[1] I.M. Gel'fand , G.E. Shilov, Generalized Functions, v. I, Properties and Operations, Academic Press., 1964, 423 pp. | MR | MR | Zbl

[2] I.A. Kipriyanov, Singular elliptic boundary value problems, Nauka Publ., Moscow, 1997, 200 pp. (In Russ.) | MR

[3] L.N. Lyakhov, I.P. Polovinkin , E.L. Shishkina, “On a Kipriyanov problem for a singular ultrahyperbolic equation”, Differential Equations, 50:4 (2014), 513–525 | DOI | DOI | MR | Zbl

[4] L.N. Lyakhov, I.P. Polovinkin , E.L. Shishkina, “Formulas for the solution of the Cauchy problem for a singular wave equation with Bessel time operator”, Doklady Mathematics, 90:3 (2014), 737–742 | DOI | DOI | MR | MR | Zbl

[5] L. Hörmander, The Analysis of Linear Partial Differential Operators, v. I, Springer-Verlag, Berlin–Heidelberg, 2003, 440 pp. | MR | Zbl

[6] L.N. Lyakhov, $B$-hypersingular integrals and its applications to Kipriyanov’s functional classes and to integral equations with $B$-potential kernels, Lipetsk State Pedagogical University Publ., Lipetsk, 2007, 232 pp. (In Russ.)

[7] E.L. Shishkina, “Weighted distribution and the fundamental solution of the $B$-ultrahyperbolic equation”, Some actual problems of mathematics and mathematical education, Gertsen Russian State Pedagogical University Publ., St. Petersburg, 2015, 125–128 (In Russ.) | MR

[8] E. L. Shishkina, “On weighted generalized functions associated with quadratic forms”, Issues of Analysis, 5(23):2 (2016), 52–68 | DOI | MR | Zbl

[9] E. L. Shishkina, “Weighted distribution $P^\lambda_{\gamma,+}$ corresponding to a quadratic form”, Research on mathematical analysis, differential equations and their applications, v. 2, Mathematical forum (Scientific results. The South of Russia), 10, 2016, 88–102 (In Russ.)

[10] E. L. Shishkina, “Weighted distribution $r^\lambda$”, Herald of Voronezh State University. Series physics, mathematics, 2006, no. 1, 215–221 (In Russ.) | Zbl

[11] I.A. Kipriyanov , L.A. Ivanov, “Obtaining of fundamental solutions for homogeneous equations with singularities with respect to several variables”, Proceedings of S.L. Sobolev's workshop, 1, Academy of Sciences of USSR, Siberian Branch, 1981, 55–77 (In Russ.)

[12] L.N. Lyakhov, “Riezs $B$-potentials space”, Reports of Academy of Sciences, 334:3 (1994), 278–280 (In Russ.) | Zbl

[13] A. Sajǧlam, H. Y{\i}ld{\i}r{\i}m, M. Z. Sar{\i}kaya, “On the product of the ultra-hyperbolic Bessel operator related to the elastic waves”, Selçuk J. of Applied Mathematics, 10:1 (2009), 85–93 | MR