Biorthogonal wavelet code in fields of characteristic two
Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 1, pp. 66-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we propose a scheme for the constructing of error-correcting cyclic wavelet codes on the basis of the biorthogonal transformation over finite fields of the even characteristic. The method of such codes constructing uses the Euclidean algorithm of the polynomials greatest common divisor calculating. It simplifies the possibility of the constructing of wavelet codes with specified properties. It is proved that there are wavelet codes with a given code distance.
Keywords: polyphasic scheme, biorthogonal transform, wavelet code, finite field.
@article{CHFMJ_2017_2_1_a6,
     author = {A. A. Soloviev and D. V. Chernikov},
     title = {Biorthogonal wavelet code in fields of characteristic two},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {66--79},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_1_a6/}
}
TY  - JOUR
AU  - A. A. Soloviev
AU  - D. V. Chernikov
TI  - Biorthogonal wavelet code in fields of characteristic two
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2017
SP  - 66
EP  - 79
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_1_a6/
LA  - ru
ID  - CHFMJ_2017_2_1_a6
ER  - 
%0 Journal Article
%A A. A. Soloviev
%A D. V. Chernikov
%T Biorthogonal wavelet code in fields of characteristic two
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2017
%P 66-79
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_1_a6/
%G ru
%F CHFMJ_2017_2_1_a6
A. A. Soloviev; D. V. Chernikov. Biorthogonal wavelet code in fields of characteristic two. Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 1, pp. 66-79. http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_1_a6/

[1] F.J. MacWilliams, N.J.A. Sloane, The theory of error-correcting codes, Svyaz' Publ., Moscow, 1979, 744 pp. (In Russ.)

[2] F.\;Fekri, S. W.\;McLaughlin, R. M.\;Mersereau and R. W.\;Schafer, “Double circulant self dual codes using finite field wavelet transforms”, Applied Algebra, Algebraic Algorithms and Error Correcting Codes Conf. (Honolulu, HI, 1999), Lecture Notes in Computer Sciences, 1719, 1999, 355–364 | DOI | MR | Zbl

[3] F.\;Fekri, S. W.\;McLaughlin, R. M.\;Mersereau and R. W.\;Schafer, Error Control Coding Using Finite Field Wavelet Transforms, No 30332, Center for Signal Image Processing, Georgia Inst. of Technology, Atlante, 1999, 13 pp.

[4] I. Daubechies, Ten lectures on wavelets, RTTS Regulyarnaya i khaoticheskaya dinamika Publ., Izhevsk, 2001, 464 pp. (In Russ.)

[5] S.\;Mallat, A Wavelet Tour of Signal Processing, 2, Academic Press, 1999, 637 pp. | MR | Zbl

[6] S. M.\;Phoong, P. P.\;Vaidyanathan, “Paraunitary filter banks over finite fields”, IEEE Trans. Signal Processing, 45:6 (1997), 1443–1457 | DOI | Zbl

[7] F.\;Fekri, R. M.\;Mersereau, R. W.\;Schafer, “Theory of paraunitary filter banks over fields of characteristic two”, IEEE Trans. on Inform. Theory, 48:11 (2002.), 2964-–2979 | DOI | MR | Zbl

[8] F. Fekri, F. Delgosha, Finite-Field Wavelet Transforms with Applications in Cryptography and Coding, Prentice Hall PTR, 2010

[9] G.\;Caire, R. L.\;Grossman, H. V.\;Poor, “Wavelet transforms associated with finite cyclic groups”, IEEE Trans. on Inform. Theory, 39:4 (1993), 1157–1166 | DOI | MR | Zbl

[10] F.\;Fekri, R. M.\;Mersereau, R. W.\;Schafer, “Theory of wavelet transform over finite fields”, Proc. of IEEE Intern. Conf. on Acoustics, Speech, and Signal Processing, 3 (1999), 1213–1216

[11] D. V. Chernikov, “Error-correcting codes using biorthogonal filter banks”, Siberian Electronic Mathematical Rep., 12 (2015), 704–713 | Zbl

[12] I.\;Doubechies, W.\;Sweldens, “Factoring wavelet transforms into lifting steps”, The J. of Fourier Analysis and Applications, 4:3 (1998), 247–269 | DOI | MR

[13] E. Berlekamp, L. Welch, Error Correction of Algebraic Block Codes, US Patent Number 4,633,470

[14] S. V. Fedorenko, “A simple algorithm for decoding Reed — Solomon codes and its relation to the Welch — Berlekamp algorithm”, IEEE Trans. on Inform. Theory, 51:3 (2005), 1196–1198 | DOI | MR | Zbl