On dynamics of relational systems: relativistic case
Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 1, pp. 113-127.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper the initial stages to obtain the dynamic equation of the relational theory is discussed. As the limiting dynamic equation we use the equations describing the relativistic dynamics of a three-dimensional spatial hypersurface that is composed of a continuum set of arbitrary moving particles and corresponding to the same value of their proper time. The relations describing the internal geometry of the space hypersurface are obtained. The problem of the interpretation of the spatial metrics of the dynamically evolving space hypersurface in the case of a discrete set of particles is discussed.
Keywords: space-time, reference system, relational physics.
@article{CHFMJ_2017_2_1_a10,
     author = {A. G. Zhilkin and E. P. Kurbatov},
     title = {On dynamics of relational systems: relativistic case},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {113--127},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_1_a10/}
}
TY  - JOUR
AU  - A. G. Zhilkin
AU  - E. P. Kurbatov
TI  - On dynamics of relational systems: relativistic case
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2017
SP  - 113
EP  - 127
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_1_a10/
LA  - ru
ID  - CHFMJ_2017_2_1_a10
ER  - 
%0 Journal Article
%A A. G. Zhilkin
%A E. P. Kurbatov
%T On dynamics of relational systems: relativistic case
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2017
%P 113-127
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_1_a10/
%G ru
%F CHFMJ_2017_2_1_a10
A. G. Zhilkin; E. P. Kurbatov. On dynamics of relational systems: relativistic case. Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 1, pp. 113-127. http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_1_a10/

[1] Yu.S. Vladimirov, Metaphysics, Binom. Laboratoriya znaniy Publ., Moscow, 2009, 568 pp. (In Russ.)

[2] A.G. Zhilkin, “Basic categories and principles of relational physics”, Bulletin of Chelyabinsk State University, 25 (316) (2013), 80–92 (In Russ.)

[3] A.G. Zhilkin, “Relational physics from the view-point of metaphysics”, Metaphysics, 2 (12) (2014), 49–67 (In Russ.)

[4] A.G. Zhilkin, “On dynamics of relational systems: non-relativistic case”, Chelyabinsk Physical and Mathematical Journal, 2:1 (2017), 99–112 (In Russ.)

[5] A.L. Zelmanov, “Chronometric invariants and comoving coordinates in theory of general relativity”, Reports of Academy of Sciences of USSR, 107:6 (1956), 815–818 (In Russ.) | Zbl

[6] Yu.S. Vladimirov, Reference frames in theory of gravity, Energoizdat Publ., Moscow, 1982, 256 pp. (In Russ.) | MR

[7] L.D. Landau, E.M. Lifshitz, The Classical Theory of Field, Heinemann, Oxford–Butterworth, 1975 | MR | MR

[8] R. Arnowitt, S. Deser, C. W. Misner, “The dynamics of general relativity”, Gravitation: an introduction to current research, ed. L. Witten, Wiley, New York, 1962, 227–265 | MR

[9] C.W. Misner , K.S. Thorne, J.A. Wheeler, Gravitation, Freeman, San Francisco, 1973, 1304 pp. | MR | MR

[10] P. K. Rashevsky, Riemann geometry and tensor analysis, Nauka Publ., Moscow, 1967, 664 pp. (In Russ.) | MR

[11] L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, Pergamon Press, Oxford, 1977 | MR