Finding of units for integer group rings of orders 16 and 32 cyclic groups
Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 4, pp. 30-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

The groups of integer group rings units for cyclic groups of orders 16 and 32 are described. This description is obtained as a direct product of their subgroups. Generators of one of the subgroups are found for orders 16 and 32.
Keywords: group ring, group ring unit, cyclic group, primitive root, track, character.
@article{CHFMJ_2016_1_4_a2,
     author = {R. Zh. Aleev and O. V. Mitina and T. A. Khanenko},
     title = {Finding of units  for integer group rings of orders 16 and 32 cyclic groups},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {30--55},
     publisher = {mathdoc},
     volume = {1},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_4_a2/}
}
TY  - JOUR
AU  - R. Zh. Aleev
AU  - O. V. Mitina
AU  - T. A. Khanenko
TI  - Finding of units  for integer group rings of orders 16 and 32 cyclic groups
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2016
SP  - 30
EP  - 55
VL  - 1
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_4_a2/
LA  - ru
ID  - CHFMJ_2016_1_4_a2
ER  - 
%0 Journal Article
%A R. Zh. Aleev
%A O. V. Mitina
%A T. A. Khanenko
%T Finding of units  for integer group rings of orders 16 and 32 cyclic groups
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2016
%P 30-55
%V 1
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_4_a2/
%G ru
%F CHFMJ_2016_1_4_a2
R. Zh. Aleev; O. V. Mitina; T. A. Khanenko. Finding of units  for integer group rings of orders 16 and 32 cyclic groups. Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 4, pp. 30-55. http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_4_a2/

[1] R. Zh. Aleev, Tsentral'nye edinitsy tselochislennykh gruppovykh kolets konechnykh grupp, Thesis, Chelyabinsk, 2000, 355 pp. (In Russ.)

[2] Ch. W. Curtis, I. Reiner, Representation Theory of Finite Groups and Associative Algebras, AMS Chelsea Publ., Providence, Rhode Island, 2006, 689 pp. | MR | MR | Zbl

[3] R. Zh. Aleev, O. V. Mitina, V. N. Puzach, “An inductive approach to the description of the units groups of units for integer group rings of cyclic 2-groups”, Abstracts of the International Conference “Mal'tsev meeting”, dedicated to 75th anniversary of Yu.L. Ershov, International Conference “Mal'tsev meeting”, dedicated to 75th anniversary of Yu.L. Ershov (May 3–7, 2015, Novosibirsk), Novosibirsk, 2015, 81 (In Russ) | Zbl

[4] W. Sinnott, “On the Stickelberger ideal and circular units of a cyclotomic field”, Annals of Mathematics, 108:1 (1978), 107–134 | DOI | MR | Zbl

[5] J. C. Miller, “Class numbers of totally real fields and applications to the Weber class number problem”, Acta Arithmetica, 164:4 (2014), 381–397 | DOI | MR | Zbl

[6] J. C. Miller, “Class numbers of real cyclotomic fields of composite conductor”, LMS J. of Computation and Mathematics, 17:A, special iss. (2014), 404–417 | DOI | MR

[7] F. J. van der Linden, “Class number computations of real Abelian number fields”, Mathematics of Computations, 39:160 (1982), 693–707 | DOI | MR | Zbl

[8] J. M. Masley, “Solution of small class number problems for cyclotomic fields”, Compositio Mathematica, 33:2 (1976), 179–186 | MR | Zbl

[9] T. Fukuda, K. Komatsu, “Weber's class number problem in the cyclotomic $\mathbb{Z}_2$-extension of $\mathbb{Q}$”, III Intern. J. of Number Theory, 7:6 (2011), 1627–1635 | DOI | MR | Zbl

[10] R. Zh. Aleev, V. S. Taksheeva, “Generators of the group of cyclotomic units”, Bulletin of Chelyabinsk State University, 6 (107):10 (2008), 121–129 (In Russ.) | MR

[11] H. Bass, “Generators and relations for cyclotomic units”, Nagoya Mathematical J., 27:2 (1966), 401–407 | DOI | MR | Zbl

[12] I. M. Vinogradov, Fundamentals of number theory, Lan' Publ., St. Petersburg, 2009, 176 pp. (In Russ.)

[13] R. Zh. Aleev, O. V. Mitina, E. A. Khristenko, “Congruence modulo 2 of circular units in the fields $Q_{16}$ and $Q_{32}$”, Chelyabinsk Physical and Mathematical Journal, 1:4 (2016), 8–29 (In Russ.)