Group classification of the quasistationary phase fileld equations system
Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 3, pp. 63-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

The quasistationary system of the phase field equations is considered. Equivalence transformations groups (not universal) are found for seven subclasses of the system free parameters. In the nonlinear case the group classification of the equations system is obtained.
Keywords: nonlinear partial differential equation, group analysis, equivalence transformations group, group classification, invariant submodel.
@article{CHFMJ_2016_1_3_a4,
     author = {V. E. Fedorov},
     title = {Group classification of the quasistationary phase fileld equations system},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {63--76},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_3_a4/}
}
TY  - JOUR
AU  - V. E. Fedorov
TI  - Group classification of the quasistationary phase fileld equations system
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2016
SP  - 63
EP  - 76
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_3_a4/
LA  - ru
ID  - CHFMJ_2016_1_3_a4
ER  - 
%0 Journal Article
%A V. E. Fedorov
%T Group classification of the quasistationary phase fileld equations system
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2016
%P 63-76
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_3_a4/
%G ru
%F CHFMJ_2016_1_3_a4
V. E. Fedorov. Group classification of the quasistationary phase fileld equations system. Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 3, pp. 63-76. http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_3_a4/

[1] P. I. Plotnikov, A. V. Klepacheva, “The phase field equations and gradient flows of marginal functions”, Siberian Mathematical Journal, 42:3 (2001), 551–567 | DOI | MR | Zbl

[2] P. I. Plotnikov P.I., V. N. Starovoytov, “The Stefan problem with surface-tension as the limit of a phase field”, Differential Equations, 29:3 (1993), 395–404 | MR | Zbl

[3] Yu. A. Chirkunov, S. V. Khabirov, Elements of symmetry analysis for differential equations of continuous media, Novosibirsk State Technical University Publ., Novosibirsk, 2012, 659 pp. (In Russ.)

[4] L. V. Ovsyannikov, Group Analysis of Differential Equations, Transl. from the Russian, Academic Press, New York, 1982, 416 pp. | MR | MR | Zbl

[5] N. H. Ibragimov, Selected Works, v. 1,2, Alga Publications : Blekinge Institute of Technology, Karlskrona, Sweden, 2001, 291 pp.

[6] L. V. Ovsyannikov, “The «podmodeli» program. Gas dynamics”, Journal of Applied Mathematics and Mechanics, 58:4 (1994), 601–627 | DOI | MR | Zbl