Mixed control problems for Sobolev's system
Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 2, pp. 78-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper solvability conditions are obtained for robust mixed optimal control problems to the Sobolev's system of equations. Problems with a quality functional using the norm in Lebesgue space and with a terminal functional are considered.
Keywords: optimal control, robust control, mixed control, terminal functional, Sobolev's system of equations.
@article{CHFMJ_2016_1_2_a7,
     author = {A. F. Shuklina and M. V. Plekhanova},
     title = {Mixed control problems for {Sobolev's} system},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {78--84},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a7/}
}
TY  - JOUR
AU  - A. F. Shuklina
AU  - M. V. Plekhanova
TI  - Mixed control problems for Sobolev's system
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2016
SP  - 78
EP  - 84
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a7/
LA  - ru
ID  - CHFMJ_2016_1_2_a7
ER  - 
%0 Journal Article
%A A. F. Shuklina
%A M. V. Plekhanova
%T Mixed control problems for Sobolev's system
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2016
%P 78-84
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a7/
%G ru
%F CHFMJ_2016_1_2_a7
A. F. Shuklina; M. V. Plekhanova. Mixed control problems for Sobolev's system. Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 2, pp. 78-84. http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a7/

[1] A. V. Fursikov, Optimal control of distributed systems. Theory and Applications, Nauchnaya kniga Publ., Novosibirsk, 1999, 350 pp. (In Russ.)

[2] A. F. Islamova, Mixed control problems for linear distributed systems of Sobolev type, Thesis, Chelyabinsk, 2012, 129 pp. (In Russ.)

[3] M. V. Plekhanova, V. E. Fedorov, Optimal control for degenerate distributed systems, Izdatel'skiy Tsentr Yuzhno-Ural'skogo gosudarstvennogo universiteta Publ., Chelyabinsk, 2013, 174 pp. (In Russ.)

[4] V. E. Fedorov, “Smoothness of solutions of linear equations of Sobolev type”, Differential Equations, 37:12 (2001), 1731–1735 | MR | Zbl

[5] V. E. Fedorov, “A generalization of the Hille — Yosida theorem to the case of degenerate semigroups in locally convex spaces”, Siberian Mathematical Journal, 45:2 (2005), 333–350 | DOI | MR

[6] M. V. Plekhanova, V. E. Fedorov, “An optimal control problem for a class of degenerate equations”, Journal of Computer and Systems Sciences International, 43:5 (2004), 698–702 | MR

[7] M. V. Plekhanova, V. E. Fedorov, “Kriterii optimalnosti v zadache upravleniya dlya lineinogo uravneniya sobolevskogo tipa”, Izv. RAN. Teoriya i sistemy upravleniya, 2007, no. 2, 37–44 | MR

[8] M. V. Plekhanova, A. F. Islamova, “Study of the linearized Boussinesq equations system by the methods of the theory of degenerate semigroups”, Bulletin of Chelyabinsk State University, 2009, no. 11, 20 (158), 70–76 (In Russ.)

[9] M. V. Plekhanova, V. E. Fedorov, “On the existence and uniqueness of solutions of optimal control problems of linear distributed systems which are not solved with respect to the time derivative”, Izvestiya: Mathematics, 75:2 (2011), 395–412 | DOI | DOI | MR | Zbl

[10] A. F. Islamova, “Minimization of functionals with a weak norm on solutions of degenerate linear equation”, Bulletin of South Ural State University. Ser. Mathematical modeling and programming, 2011, no. 8, 17 (234), 36–45 (In Russ.) | Zbl

[11] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003, 216+vii pp. | MR | Zbl

[12] S. L. Sobolev, “On a new problem of mathematical physics”, Izvestiya Akademii nauk SSSR. Seriya matematicheskaya, 18:1 (1954), 3–50 (In Russ.) | Zbl

[13] A. V. Urazaeva, V. E. Fedorov, Differential Equations, 44:8 (2008), 1147–1156 | DOI | MR | Zbl

[14] V. E. Fedorov, D. M. Gordievskikh, “Solutions of initial-boundary value problems for some degenerate time-fractional order systems of equations”, News of Irkutsk State University. Mathematics, 12 (2015), 12–22 (In Russ.) | Zbl