Reference states of Cr-doped Ni-Co-Mn-(In, Sn) alloys: insights from first principles study
Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 2, pp. 117-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we report on the equilibrium magnetic and structural reference states of complex Cr-doped Ni-Co-Mn-(In, Sn) Heusler alloys, which are studied from first-principles within the density functional theory. The off-stoichiometric compositions were treated by using the supercell approach with different atomic distributions of excess Mn and In atoms. Supercells of 16 and 32 atoms were used. Three different ferrimagnetic and one ferromagnetic spin configurations were considered. The results of energy relaxation calculations have been averaged over different atomic distributions. It is found that for 16 atoms supercell the ferromagnetic (ferrimagnetic) state in austenite and a ferrimagnetic state in martensite are favorable for Ni$_7$Co$_1$Mn$_5$Cr$_1$In(Sn)$_2$, respectively. While for 32 atoms supercell of Ni$_{14}$Co$_2$Mn$_{11}$Cr$_1$(In, Sn)$_4$ the ferromagnetic (a ferrimagnetic) spin configuration in austenite (martensite) is energetically stable, respectively.
Keywords: Heusler alloys, supercell approach, magnetic reference state, ab initio calculations.
@article{CHFMJ_2016_1_2_a11,
     author = {V. D. Buchelnikov and V. V. Sokolovskiy and M. A. Zagrebin},
     title = {Reference states of {Cr-doped} {Ni-Co-Mn-(In,} {Sn)} alloys: insights from first principles study},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {117--123},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a11/}
}
TY  - JOUR
AU  - V. D. Buchelnikov
AU  - V. V. Sokolovskiy
AU  - M. A. Zagrebin
TI  - Reference states of Cr-doped Ni-Co-Mn-(In, Sn) alloys: insights from first principles study
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2016
SP  - 117
EP  - 123
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a11/
LA  - en
ID  - CHFMJ_2016_1_2_a11
ER  - 
%0 Journal Article
%A V. D. Buchelnikov
%A V. V. Sokolovskiy
%A M. A. Zagrebin
%T Reference states of Cr-doped Ni-Co-Mn-(In, Sn) alloys: insights from first principles study
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2016
%P 117-123
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a11/
%G en
%F CHFMJ_2016_1_2_a11
V. D. Buchelnikov; V. V. Sokolovskiy; M. A. Zagrebin. Reference states of Cr-doped Ni-Co-Mn-(In, Sn) alloys: insights from first principles study. Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 2, pp. 117-123. http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a11/

[1] R. Das, S. Sarma, A. Perumal, A. Srinivasan, “Effect of Co and Cu substitution on the magnetic entropy change in Ni$_{46}$Mn$_{43}$Sn$_{11}$ alloy”, Journal of Applied Physics, 109 (2011), 07A901-4

[2] J. Liu et al., “Giant magnetocaloric effect driven by structural transitions.”, Nature Materials, 11 (2012), 620–626 | DOI

[3] D. Y. Cong, S. Roth, L. Schultz, “Magnetic properties and structural transformations in Ni-Co-Mn-Sn multifunctional alloys”, Acta Materialia, 60 (2012), 5335–5351 | DOI

[4] S. Fabbrici et al., “Co and In doped Ni-Mn-Ga Magnetic shape memory alloys: a thorough structural, magnetic and magnetocaloric study”, Entropy, 16 (2014), 2204–2222 | DOI

[5] T. Gottschall et al., “Large reversible magnetocaloric effect in Ni-Mn-In-Co”, Applied Physics Letters, 106 (2015), 021901-4 | DOI

[6] V. V. Sokolovskiy, M. A. Zagrebin, V. D. Buchelnikov, “Novel achievements in the research field of multifunctional shape memory Ni-Mn-In and Ni-Mn-In-Z Heusler alloys”, Shape Memory Alloys: Properties, Technologies, Opportunities, 81–82, Materials Science Foundations, eds. N. Resnina and V. Rubanik, 2015, 38–76

[7] A. Planes, L. Mañosa, M. Acet, “Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys”, Journal of Physics: Condensed Matter, 30 (2009), 233201-29 | DOI

[8] D. Comtesse et al., “First-principles calculation of the instability leading to giant inverse magnetocaloric effects”, Physical Review B, 89 (2014), 184403-6 | DOI

[9] V. D. Buchelnikov et al., “Magnetic states of the Ni$_{1.75}$Co$_{0.25}$Mn$_{1.25}$Cr$_{0.25}$In$_{0.5}$ Heusler alloy”, IEEE Transactions on Magnetics, 51 (2015) | DOI

[10] V. V. Sokolovskiy et al., “Achieving large magnetocaloric effects in Co- and Cr-substituted Heusler alloys: Predictions from first-principles and Monte Carlo studies”, Physical Review B, 91 (2015), 220409(R)-5 | DOI

[11] G. Kresse, J. Furthmuller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set”, Physical Review B, 54 (1996), 11169-18 | DOI

[12] G. Kresse, D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method”, Physical Review B, 59 (1999), 1758-18 | DOI

[13] P. E. Blöchl, Projector augmented-wave method, 50 (1994), 17953-27

[14] J. P. Perdew, Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy”, Physical Review B, 45 (1992), 13244-6 | DOI

[15] H. J. Monkhorst, J. D. Pack, “Special points for Brillouin-zone integrations”, Physical Review B, 13 (1976), 5188-5 | DOI | MR

[16] Quantum ESPRESSO package Version 5.02, (accessed 10.05.2015) http://www.pwscf.org