Differential game with a change of dynamics and control integral constraint of the first player
Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 2, pp. 5-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

The one-type game is considered in which the first player has a change of the dynamics and an integral constraint on the control, and the second one has a geometrical constraint. The purpose of the first player is the $\varepsilon$-capture of the enemy at a fixed time $p$ with a minimum expenditure of reserve resources, the goal of the second one is opposite. A necessary and sufficient condition for the solving of the problem by the first player is found.
Keywords: differential game, change of dynamics, integral constraint, guaranteed result.
@article{CHFMJ_2016_1_2_a0,
     author = {S. R. Aleeva and L. V. Galljamova},
     title = {Differential game with a change of dynamics and control integral constraint of the first player},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {5--15},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a0/}
}
TY  - JOUR
AU  - S. R. Aleeva
AU  - L. V. Galljamova
TI  - Differential game with a change of dynamics and control integral constraint of the first player
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2016
SP  - 5
EP  - 15
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a0/
LA  - ru
ID  - CHFMJ_2016_1_2_a0
ER  - 
%0 Journal Article
%A S. R. Aleeva
%A L. V. Galljamova
%T Differential game with a change of dynamics and control integral constraint of the first player
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2016
%P 5-15
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a0/
%G ru
%F CHFMJ_2016_1_2_a0
S. R. Aleeva; L. V. Galljamova. Differential game with a change of dynamics and control integral constraint of the first player. Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 2, pp. 5-15. http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_2_a0/

[1] N. N. Krasovskiy, A. I. Subbotin, Positional differential games, Nauka publ., Moscow, 1974, 456 pp. (In Russ.) | MR

[2] S. R. Aleeva, V. I.Ukhobotov, “The one-type game with an integral constraint of the first player”, Bulletin of Chelyabinsk State University. Ser. 3: Mathematics. Mechanics, 1999, no. 1 (4), 16–29 (In Russ.)

[3] S. R. Aleeva, Modelling of the guaranteed result in traffic control problems with integral constraints in terms of interference effects, Thesis, 2002, 145 pp. (In Russ.)

[4] S. R. Aleeva, “On a differential game with integral constraint”, Mathematics. Mechanics. Informatics, Proceedings of All-Russian Scientific Conference (Chelyabinsk, 19–22 September 2006), ed. S.V. Matveev, Chelyabinsk State University Publ., Chelyabinsk, 2007, 7–13 (In Russ.) | MR

[5] “Guaranteed result in the problem of minimizing of the distance with integral constraint”, Bulletin of Chelyabinsk State University, 26 (280) (2012), 41–48 (In Russ.) | MR

[6] A. A. Lyusternik, V. I. Sobolev, Elements of functional analysis, Nauka Publ., Moscow, 1965, 520 pp. (In Russ.) | MR

[7] A. D. Ioffe, V. M. Tihomirov, The theory of extreme problems, Nauka Publ., Moscow, 1974, 480 pp. (In Russ.) | MR

[8] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, Nauka Publ., Moscow, 1972, 496 pp. (In Russ.) | MR

[9] F. Riss, B. Syokefal'vi-Nad', Lectures on functional analysis, Mir Publ., Moscow, 1979, 289 pp. (In Russ.) | MR