Asymptotic expansion of a monodromy map
Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 1, pp. 59-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we compute the asymptotic series of the monodromy transformation of a monodromic singular point of a vector field in the plane when its Newton diagram consists of a single non-degenerate edge. The method of a resolution of singularities via Newton diagram is applied. A hypothesis about the existence of an algorithm for calculating the coefficients of correspondence maps and monodromy transformation containing no operation limit is put forward. This conjecture has been proved in the case of a single non-degenerate edge of the Newton diagram, as well as for the first two coefficients in the asymptotic expansion of the correspondence map in the first quadrant of the plane (as well as the monodromy transformation) in the case where the Newton diagram of the vector field consists of two non-degenerate edges.
Keywords: monodromic singular point, resolution of singularities, focus, center, monodromy transformation, Newton diagram.
@article{CHFMJ_2016_1_1_a6,
     author = {N. B. Medvedeva},
     title = {Asymptotic expansion of a monodromy map},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {59--72},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a6/}
}
TY  - JOUR
AU  - N. B. Medvedeva
TI  - Asymptotic expansion of a monodromy map
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2016
SP  - 59
EP  - 72
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a6/
LA  - ru
ID  - CHFMJ_2016_1_1_a6
ER  - 
%0 Journal Article
%A N. B. Medvedeva
%T Asymptotic expansion of a monodromy map
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2016
%P 59-72
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a6/
%G ru
%F CHFMJ_2016_1_1_a6
N. B. Medvedeva. Asymptotic expansion of a monodromy map. Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 1, pp. 59-72. http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a6/

[1] V. I. Arnol'd, Yu. S. Il'yashenko, “Ordinary differential equations”, Results of science and technology. Contemporary problems of mathemtics. Fundamental directions, 1, 1985, 7–149 (In. Russ.) | MR | Zbl

[2] Yu. S. Il'yashenko, “Dulac's memoir «On limit cycles» and related problems of the local theory of differential equations”, Russian Mathematical Surveys, 40:6 (1985), 1–49 | DOI | MR

[3] N. B. Medvedeva, “Principal term of the monodromy transformation of a monodromic singular point is linear”, Siberian Mathematical Journal, 33:2 (1992), 280–288 | DOI | MR | Zbl

[4] N. B. Medvedeva , E. V. Mazaeva, “Focus sufficient condition for a monodromic singular point”, Transactions of the Moscow Mathematical Society, 63, 87–114 (In. Russ.) | MR | Zbl

[5] F. S. Berezovskaya, N. B. Medvedeva, “Monodromy transformation asymptotics of a singular point with a fixed Newton diagram”, Transactions of Petrovskiy workshop, 15, 1991, 156–177 (In Russ.) | MR

[6] A. S. Voronin, N. B. Medvedeva, “Stability of monodromic singular points with a fixed Newton diagram”, Bulletin of Udmurt University. Mathematics. Mechanics. Computer Sciences, 2009, no. 3, 34–49 (In Russ.)

[7] A. S. Voronin, N. B. Medvedeva, “Asymptotics of the monodromy transformation in the case of two even edges in the Newton diagram”, Bulletin of Chelyabinsk State University. Mathematics. Mechanics. Informatics, 2011, no. 27 (242) (In Russ.) | MR

[8] A. S. Voronin, N. B. Medvedeva, “Asymptotics of the monodromy transformation in certain classes of monodromy germs”, Izvestiya:Mathematics, 77:2 (2013), 253–270 | DOI | DOI | MR | Zbl

[9] A. D. Bryuno, Local method of nonlinear analysis for differential equations, Nauka Publ., Moscow, 1979 (In Russ.) | MR

[10] V. P. Varin, “Poincaré map for some polynomial systems of differential equations”, Sbornik: Mathematics, 195:7 (2004), 917–934 | DOI | DOI | MR | Zbl

[11] N. B. Medvedeva, “On the analytic solvability of the problem of distinguishing between center and focus”, Proceedings of the Steklov Institute of Mathematics, 254, no. 1, 2006, 7–93 | DOI | MR | Zbl

[12] N. B. Medvedeva, “Ob analiticheskoi nerazreshimosti problemy ustoichivosti na ploskosti”, Uspekhi mat. nauk, 68:5 (413) (2013), 147–176 | DOI | MR | Zbl

[13] J. Hadamard, Lectures on Cauchy's Problem in Linear Partial Differential Equations, Dover Publications, Mineola, New York, 2003 | MR | MR