Asymptotics of three-dimensional integrals singularly depending on a small parameter
Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 1, pp. 35-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotics of some three-dimensional integrals singularly depending on a small parameter is constructed. The integrand denominator of the considered integrals is a sum of a small parameter and nonnegative function vanishing on three not intersecting surfaces. Such form integrals diverge as a small parameter tends to zero. The method of singularities subtraction and the circle method are applied.
Keywords: asymptotic expansion, small parameter, integral, singularities subtraction method, circle method.
@article{CHFMJ_2016_1_1_a3,
     author = {A. A. Ershov},
     title = {Asymptotics of three-dimensional integrals singularly depending on a small parameter},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {35--42},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a3/}
}
TY  - JOUR
AU  - A. A. Ershov
TI  - Asymptotics of three-dimensional integrals singularly depending on a small parameter
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2016
SP  - 35
EP  - 42
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a3/
LA  - ru
ID  - CHFMJ_2016_1_1_a3
ER  - 
%0 Journal Article
%A A. A. Ershov
%T Asymptotics of three-dimensional integrals singularly depending on a small parameter
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2016
%P 35-42
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a3/
%G ru
%F CHFMJ_2016_1_1_a3
A. A. Ershov. Asymptotics of three-dimensional integrals singularly depending on a small parameter. Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 1, pp. 35-42. http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a3/

[1] Fedoryuk M. V., Asymptotics, integral and series, Nauka Publ., Moscow, 1987, 544 pp. (In Russ.) | MR

[2] Riekstynsh E. Ya., Asymptotic expansions of integrals, v. 1,2, Zinatne Publ., Riga, 1974, 392, 464 pp. (In Russ.)

[3] Riekstynsh E. Ya., Asymptotic expansions of integrals, v. 3, Zinatne Publ., Riga, 1981, 370 pp. (In Russ.) | MR

[4] A. M., Il'in A. R. Danilin, Asymptotic methods in analysis, Fizmatlit Publ., Moscow, 2009, 248 pp. (In Russ.)

[5] A. M. Il'in, A. A. Ershov, Proceedings of the Steklov Institute of Mathematics, 268, suppl. 1 (2010), 131–142 | DOI | MR

[6] V. I. Arnold, Catastrophe theory, Izdatel'stvo Moskovskogo gosudarstvennogo universiteta Publ., Moscow, 1983, 80 pp. (In Russ.)

[7] Th. Bröker, L. Lander, Differentiable Germs and Catastrophes, Cambrige University Press, 1975, 188 pp. | MR