Asymptotics of three-dimensional integrals singularly depending on a small parameter
Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 1, pp. 35-42
Voir la notice de l'article provenant de la source Math-Net.Ru
Asymptotics of some three-dimensional integrals singularly depending on a small parameter is constructed. The integrand denominator of the considered integrals is a sum of a small parameter and nonnegative function vanishing on three not intersecting surfaces. Such form integrals diverge as a small parameter tends to zero. The method of singularities subtraction and the circle method are applied.
Keywords:
asymptotic expansion, small parameter, integral, singularities subtraction method, circle method.
@article{CHFMJ_2016_1_1_a3,
author = {A. A. Ershov},
title = {Asymptotics of three-dimensional integrals singularly depending on a small parameter},
journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
pages = {35--42},
publisher = {mathdoc},
volume = {1},
number = {1},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a3/}
}
TY - JOUR AU - A. A. Ershov TI - Asymptotics of three-dimensional integrals singularly depending on a small parameter JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2016 SP - 35 EP - 42 VL - 1 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a3/ LA - ru ID - CHFMJ_2016_1_1_a3 ER -
A. A. Ershov. Asymptotics of three-dimensional integrals singularly depending on a small parameter. Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 1, pp. 35-42. http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a3/