Computation of quantum factorials and their inverses
Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 1, pp. 6-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we present a method for the computation of quantum factorials those are the base of Turaev–Viro invariants. As a corollary, we obtain the integrality of the invariants for the primes.
Keywords: Turaev–Viro invariants, quantum factorials, algebraic integers.
@article{CHFMJ_2016_1_1_a0,
     author = {R. Zh. Aleev and I. R. Mukhamadeeva},
     title = {Computation of quantum factorials and their inverses},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {6--15},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a0/}
}
TY  - JOUR
AU  - R. Zh. Aleev
AU  - I. R. Mukhamadeeva
TI  - Computation of quantum factorials and their inverses
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2016
SP  - 6
EP  - 15
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a0/
LA  - ru
ID  - CHFMJ_2016_1_1_a0
ER  - 
%0 Journal Article
%A R. Zh. Aleev
%A I. R. Mukhamadeeva
%T Computation of quantum factorials and their inverses
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2016
%P 6-15
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a0/
%G ru
%F CHFMJ_2016_1_1_a0
R. Zh. Aleev; I. R. Mukhamadeeva. Computation of quantum factorials and their inverses. Čelâbinskij fiziko-matematičeskij žurnal, Tome 1 (2016) no. 1, pp. 6-15. http://geodesic.mathdoc.fr/item/CHFMJ_2016_1_1_a0/

[1] Matveev S. V., Algorithmic topology and classification of three-dimensional manyfolds, MTNMO Publ., M., 2007, 456 pp. (In Russ.)

[2] J. Milnor, “Whitehead torsion”, Bull. Amer. Math. Soc., 72 (1966), 358–426 | DOI | MR | Zbl

[3] H. Bass, “The Dirichlet unit theorem, induced characters and Whitehead groups of finite groups”, Topology, 4:4 (1998), 391–410 | DOI | MR

[4] V. G. Turaev, Quantum invariants of knots and 3-manifolds, 2nd revised ed., Walter de Gruyter, Berlin, 2010, 591 pp. | MR | Zbl

[5] Boltyanskiy V. G., Vilenkin N. Ya., Symmetry in algebra, Nauka Publ., M., 1967, 284 pp. (In Russ.)

[6] Ireland K., Rosen M., A Classical Introduction to Modern Number Theory, Springer Science+Business Media, New York, 1982, 389 pp. | MR | MR | Zbl

[7] Vinogradov I. M., Fundamentals of the number theory, Gostekhizdat Publ., M.–L., 1952, 180 pp. (In Russ.) | MR