On the theory of two-dimensional singular integral operators and its applications to boundary value problems for elliptic systems of equations
Čebyševskij sbornik, Tome 25 (2024) no. 5, pp. 74-89 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In a Lebesgue space with weight $L^p_{\beta-{2}/{p}}(D)\ (1$ where $D$ is a finite singly connected domain of the complex plane bounded by a simple closed Lyapunov curve $\Gamma$ and containing the point $z = 0$, we consider a two-dimensional singular integral operator of the Mikhlin – Calderon – Zygmund type of the form \begin{equation} \notag \begin{split} (Af)(z)\equiv a_0(z)f(z)+b_0(z)\overline{f(z)}+ \\ +\iint_D\frac{\Omega_1(z,\theta)}{|\zeta-z|^2}f(\zeta)ds_\zeta+ \iint_D\frac{\overline{\Omega_2(z,\theta)}}{|\zeta-z|^2}\overline{f(\zeta)}ds_\zeta,\ \theta=\arg(\zeta-z). \end{split} \end{equation} Depending on the homotopy class $\mathfrak M_{\nu} (\nu=0,\pm 1,\ldots,\pm m)$ of the operator $A$, we establish effective necessary and sufficient conditions for the operator $A$ to be Noetherian in $L^p_{\beta-{2}/{p}}(D) (1$ and found formulas for calculating the index of an operator. The results obtained are applied to the Dirichlet and Neumann problems for general elliptic systems of two equations with two higher-order independent variables.
Keywords: singular integral operator, operator symbol, Noetherian property, operator index, elliptic system, Dirichlet problem.
@article{CHEB_2024_25_5_a5,
     author = {G. Jangibekov and G. M. Koziev},
     title = {On the theory of two-dimensional singular integral operators and its applications to boundary value problems for elliptic systems of equations},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {74--89},
     year = {2024},
     volume = {25},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_5_a5/}
}
TY  - JOUR
AU  - G. Jangibekov
AU  - G. M. Koziev
TI  - On the theory of two-dimensional singular integral operators and its applications to boundary value problems for elliptic systems of equations
JO  - Čebyševskij sbornik
PY  - 2024
SP  - 74
EP  - 89
VL  - 25
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/CHEB_2024_25_5_a5/
LA  - ru
ID  - CHEB_2024_25_5_a5
ER  - 
%0 Journal Article
%A G. Jangibekov
%A G. M. Koziev
%T On the theory of two-dimensional singular integral operators and its applications to boundary value problems for elliptic systems of equations
%J Čebyševskij sbornik
%D 2024
%P 74-89
%V 25
%N 5
%U http://geodesic.mathdoc.fr/item/CHEB_2024_25_5_a5/
%G ru
%F CHEB_2024_25_5_a5
G. Jangibekov; G. M. Koziev. On the theory of two-dimensional singular integral operators and its applications to boundary value problems for elliptic systems of equations. Čebyševskij sbornik, Tome 25 (2024) no. 5, pp. 74-89. http://geodesic.mathdoc.fr/item/CHEB_2024_25_5_a5/