On the zeros of mean-periodic functions with respect to the Bessel convolution
Čebyševskij sbornik, Tome 25 (2024) no. 5, pp. 57-73 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In paper, we study uniqueness sets for solutions to the Bessel convolution equation $f\overset{\alpha}\star g=0$, $\alpha\in(-1/2,+\infty)$. It is shown, in particular, that if $g=\chi_r$ is an indicator function of the segment $[-r,r]$, and an even function $f\in C(\mathbb{R})$ satisfies the equation $f\overset{\alpha}\star\chi_r=0$ and is zero on $(r-\varepsilon,r)$ or $(r,r+\varepsilon)$ for some $\varepsilon>0$, then $f=0$ on $(r-\varepsilon,r+\varepsilon)$. In this case, the interval of zeros $(r-\varepsilon,r+\varepsilon)$, cannot generally be extended. It has been established that a similar phenomenon occurs for solutions of the equation $f\overset{\alpha}\star\delta_r=0$, where $\delta_r$ is an even measure that maps an even continuous function $\varphi$ on $\mathbb{R}$ to a number $\varphi(r)$. Applications of these results to uniqueness theorems for convergent sequences of linear combinations of Bessel functions, the zero set theorem for solutions of the Cauchy problem of the generalized Euler-Poisson-Darboux equation and the closure theorem of generalized shifts are found.
Keywords: generalized convolution, spherical transformation, uniqueness sets, shift closure theorems, lacunar series.
@article{CHEB_2024_25_5_a4,
     author = {Vit. V. Volchkov and G. V. Krasnoschekikh},
     title = {On the zeros of mean-periodic functions with respect to the {Bessel} convolution},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {57--73},
     year = {2024},
     volume = {25},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_5_a4/}
}
TY  - JOUR
AU  - Vit. V. Volchkov
AU  - G. V. Krasnoschekikh
TI  - On the zeros of mean-periodic functions with respect to the Bessel convolution
JO  - Čebyševskij sbornik
PY  - 2024
SP  - 57
EP  - 73
VL  - 25
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/CHEB_2024_25_5_a4/
LA  - ru
ID  - CHEB_2024_25_5_a4
ER  - 
%0 Journal Article
%A Vit. V. Volchkov
%A G. V. Krasnoschekikh
%T On the zeros of mean-periodic functions with respect to the Bessel convolution
%J Čebyševskij sbornik
%D 2024
%P 57-73
%V 25
%N 5
%U http://geodesic.mathdoc.fr/item/CHEB_2024_25_5_a4/
%G ru
%F CHEB_2024_25_5_a4
Vit. V. Volchkov; G. V. Krasnoschekikh. On the zeros of mean-periodic functions with respect to the Bessel convolution. Čebyševskij sbornik, Tome 25 (2024) no. 5, pp. 57-73. http://geodesic.mathdoc.fr/item/CHEB_2024_25_5_a4/