Variational problems in the works of academician O. I. Somov. Brachistochrone and tautochrone
Čebyševskij sbornik, Tome 25 (2024) no. 5, pp. 216-227
Cet article a éte moissonné depuis la source Math-Net.Ru
The article presents an analysis of solutions to variational problems of mechanics in the works of Academician O.I. Somov (1815-1876). In 1869 O.I. Somov not only simplifies the solution to Abel's problem, but also gives a fundamental conclusion about extending the tautochrone problem from the gravity field to any potential field. The article shows how Somov, without using Euler integrals, finds the arc traversed by a body as a function of height, in the case when time does not depend on height (tautochrone). The author of the article examines in detail how, in a kinematic and dynamic problem, Somov immediately abandons Cartesian coordinates, switching to polar coordinates, saving the reader from endless substitutions.
Mots-clés :
Variation, tautochrone
Keywords: variational problem, Abel problem.
Keywords: variational problem, Abel problem.
@article{CHEB_2024_25_5_a13,
author = {A. O. Yulina},
title = {Variational problems in the works of academician {O.~I.~Somov.} {Brachistochrone} and tautochrone},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {216--227},
year = {2024},
volume = {25},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_5_a13/}
}
A. O. Yulina. Variational problems in the works of academician O. I. Somov. Brachistochrone and tautochrone. Čebyševskij sbornik, Tome 25 (2024) no. 5, pp. 216-227. http://geodesic.mathdoc.fr/item/CHEB_2024_25_5_a13/