About one question about the set of rational numbers determined by the quotients of two subsets
Čebyševskij sbornik, Tome 25 (2024) no. 4, pp. 154-157
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, we aim to derive a quantitative version of a problem on the size of a set of fractions $A/A$, in the case where $A$ is a given finite set of natural numbers lying in the interval $[1,n]$, having positive asymptotic density $\alpha>0$ as $n \rightarrow \infty.$
Keywords:
integer numbers, density, product.
@article{CHEB_2024_25_4_a9,
author = {Yu. N. Shteinikov},
title = {About one question about the set of rational numbers determined by the quotients of two subsets},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {154--157},
year = {2024},
volume = {25},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_4_a9/}
}
Yu. N. Shteinikov. About one question about the set of rational numbers determined by the quotients of two subsets. Čebyševskij sbornik, Tome 25 (2024) no. 4, pp. 154-157. http://geodesic.mathdoc.fr/item/CHEB_2024_25_4_a9/