About one question about the set of rational numbers determined by the quotients of two subsets
Čebyševskij sbornik, Tome 25 (2024) no. 4, pp. 154-157 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we aim to derive a quantitative version of a problem on the size of a set of fractions $A/A$, in the case where $A$ is a given finite set of natural numbers lying in the interval $[1,n]$, having positive asymptotic density $\alpha>0$ as $n \rightarrow \infty.$
Keywords: integer numbers, density, product.
@article{CHEB_2024_25_4_a9,
     author = {Yu. N. Shteinikov},
     title = {About one question about the set of rational numbers determined by the quotients of two subsets},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {154--157},
     year = {2024},
     volume = {25},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_4_a9/}
}
TY  - JOUR
AU  - Yu. N. Shteinikov
TI  - About one question about the set of rational numbers determined by the quotients of two subsets
JO  - Čebyševskij sbornik
PY  - 2024
SP  - 154
EP  - 157
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CHEB_2024_25_4_a9/
LA  - ru
ID  - CHEB_2024_25_4_a9
ER  - 
%0 Journal Article
%A Yu. N. Shteinikov
%T About one question about the set of rational numbers determined by the quotients of two subsets
%J Čebyševskij sbornik
%D 2024
%P 154-157
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/CHEB_2024_25_4_a9/
%G ru
%F CHEB_2024_25_4_a9
Yu. N. Shteinikov. About one question about the set of rational numbers determined by the quotients of two subsets. Čebyševskij sbornik, Tome 25 (2024) no. 4, pp. 154-157. http://geodesic.mathdoc.fr/item/CHEB_2024_25_4_a9/