On a class of periodic elements in hyperelliptic fields defined by polynomials of odd degree
Čebyševskij sbornik, Tome 25 (2024) no. 4, pp. 147-153 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For an arbitrary odd-degree polynomial $ f $ over an arbitrary field of algebraic numbers $ \mathbb K $, the class of always quasiperiodic elements in $ \mathbb K((x)) $ of the form $ \frac{v + w \sqrt{f}}{u} $, where $ v, w, u \in \mathbb K[x] $, in the hyperelliptic field $ \mathbb K(x)(\sqrt{f}) $, has been determined. This class is characterized by certain relationships involving the polynomials $ u, v, w, $ and $ f $, as well as their degrees. The class is guaranteed to be nonempty if at least one quasiperiodic element exists in the hyperelliptic field. Furthermore, a specific subclass of always periodic elements has been identified within this broader class.
Keywords: hyperelliptic field, continued fractions, functional continued fractions, $S$-units, periodicity, quasiperiodicity, pseudoperiodicity.
@article{CHEB_2024_25_4_a8,
     author = {M. M. Petrunin},
     title = {On a class of periodic elements in hyperelliptic fields defined by polynomials of odd degree},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {147--153},
     year = {2024},
     volume = {25},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_4_a8/}
}
TY  - JOUR
AU  - M. M. Petrunin
TI  - On a class of periodic elements in hyperelliptic fields defined by polynomials of odd degree
JO  - Čebyševskij sbornik
PY  - 2024
SP  - 147
EP  - 153
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CHEB_2024_25_4_a8/
LA  - ru
ID  - CHEB_2024_25_4_a8
ER  - 
%0 Journal Article
%A M. M. Petrunin
%T On a class of periodic elements in hyperelliptic fields defined by polynomials of odd degree
%J Čebyševskij sbornik
%D 2024
%P 147-153
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/CHEB_2024_25_4_a8/
%G ru
%F CHEB_2024_25_4_a8
M. M. Petrunin. On a class of periodic elements in hyperelliptic fields defined by polynomials of odd degree. Čebyševskij sbornik, Tome 25 (2024) no. 4, pp. 147-153. http://geodesic.mathdoc.fr/item/CHEB_2024_25_4_a8/