On the number of points of an incomplete lattice in rectangular regions
Čebyševskij sbornik, Tome 25 (2024) no. 4, pp. 138-146
Cet article a éte moissonné depuis la source Math-Net.Ru
In 2013–2015 it was shown that for any purely real algebraic irrationality $\alpha$, starting from some place, all residual fractions in the expansion of $\alpha$ into a continued fraction will appear to be the reduced algebraic irrationalities. We construct the examples of purely real algebraic irrationalities $\alpha$ for which this number of the residual fraction is arbitrarily large.
Keywords:
purely real algebraic irrationality, reduced algebraic irrationality.
@article{CHEB_2024_25_4_a7,
author = {N. N. Dobrovol'skii and N. M. Dobrovol'skii},
title = {On the number of points of an incomplete lattice in rectangular regions},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {138--146},
year = {2024},
volume = {25},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_4_a7/}
}
N. N. Dobrovol'skii; N. M. Dobrovol'skii. On the number of points of an incomplete lattice in rectangular regions. Čebyševskij sbornik, Tome 25 (2024) no. 4, pp. 138-146. http://geodesic.mathdoc.fr/item/CHEB_2024_25_4_a7/