On the number of points of an incomplete lattice in rectangular regions
Čebyševskij sbornik, Tome 25 (2024) no. 4, pp. 138-146 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In 2013–2015 it was shown that for any purely real algebraic irrationality $\alpha$, starting from some place, all residual fractions in the expansion of $\alpha$ into a continued fraction will appear to be the reduced algebraic irrationalities. We construct the examples of purely real algebraic irrationalities $\alpha$ for which this number of the residual fraction is arbitrarily large.
Keywords: purely real algebraic irrationality, reduced algebraic irrationality.
@article{CHEB_2024_25_4_a7,
     author = {N. N. Dobrovol'skii and N. M. Dobrovol'skii},
     title = {On the number of points of an incomplete lattice in rectangular regions},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {138--146},
     year = {2024},
     volume = {25},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_4_a7/}
}
TY  - JOUR
AU  - N. N. Dobrovol'skii
AU  - N. M. Dobrovol'skii
TI  - On the number of points of an incomplete lattice in rectangular regions
JO  - Čebyševskij sbornik
PY  - 2024
SP  - 138
EP  - 146
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CHEB_2024_25_4_a7/
LA  - ru
ID  - CHEB_2024_25_4_a7
ER  - 
%0 Journal Article
%A N. N. Dobrovol'skii
%A N. M. Dobrovol'skii
%T On the number of points of an incomplete lattice in rectangular regions
%J Čebyševskij sbornik
%D 2024
%P 138-146
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/CHEB_2024_25_4_a7/
%G ru
%F CHEB_2024_25_4_a7
N. N. Dobrovol'skii; N. M. Dobrovol'skii. On the number of points of an incomplete lattice in rectangular regions. Čebyševskij sbornik, Tome 25 (2024) no. 4, pp. 138-146. http://geodesic.mathdoc.fr/item/CHEB_2024_25_4_a7/