Asymptotic formula in generalization of ternary Esterman problem with almost proportional summands
Čebyševskij sbornik, Tome 25 (2024) no. 4, pp. 120-137 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For $n \geq 3$, an asymptotic formula for the number of representations of a sufficiently large natural number $N$ in the form $p_1+p_2+m^n=N$, is obtained. Here $p_1$, $p_2$ are prime numbers, and $m$ is a natural number, satisfying the following conditions $$ \left|p_k-\mu_kN\right|\le H, k=1,2, \left|m^n-\mu_3N\right|\le H, H\ge N^{1-\frac1{n(n-1)}}\mathscr{L}^{\frac{2^{n+1}}{n-1}+n-1}. $$
Keywords: Estermann problem, almost proportional summands, short exponential sum of G. Weyl, small neighborhood of centers of major arcs.
@article{CHEB_2024_25_4_a6,
     author = {F. Z. Rahmonov},
     title = {Asymptotic formula in generalization of ternary {Esterman} problem with almost proportional summands},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {120--137},
     year = {2024},
     volume = {25},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_4_a6/}
}
TY  - JOUR
AU  - F. Z. Rahmonov
TI  - Asymptotic formula in generalization of ternary Esterman problem with almost proportional summands
JO  - Čebyševskij sbornik
PY  - 2024
SP  - 120
EP  - 137
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CHEB_2024_25_4_a6/
LA  - ru
ID  - CHEB_2024_25_4_a6
ER  - 
%0 Journal Article
%A F. Z. Rahmonov
%T Asymptotic formula in generalization of ternary Esterman problem with almost proportional summands
%J Čebyševskij sbornik
%D 2024
%P 120-137
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/CHEB_2024_25_4_a6/
%G ru
%F CHEB_2024_25_4_a6
F. Z. Rahmonov. Asymptotic formula in generalization of ternary Esterman problem with almost proportional summands. Čebyševskij sbornik, Tome 25 (2024) no. 4, pp. 120-137. http://geodesic.mathdoc.fr/item/CHEB_2024_25_4_a6/