On the information profile of three random variables with two outcomes
Čebyševskij sbornik, Tome 25 (2024) no. 4, pp. 27-41 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider mutual information for a pair of random variables and find a third variable (condition) that maximise conditional mutual information of three of them.
Keywords: mutual information, conditional mutual information, entropy, information inequality.
@article{CHEB_2024_25_4_a1,
     author = {A. Allemand},
     title = {On the information profile of three random variables with two outcomes},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {27--41},
     year = {2024},
     volume = {25},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_4_a1/}
}
TY  - JOUR
AU  - A. Allemand
TI  - On the information profile of three random variables with two outcomes
JO  - Čebyševskij sbornik
PY  - 2024
SP  - 27
EP  - 41
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CHEB_2024_25_4_a1/
LA  - ru
ID  - CHEB_2024_25_4_a1
ER  - 
%0 Journal Article
%A A. Allemand
%T On the information profile of three random variables with two outcomes
%J Čebyševskij sbornik
%D 2024
%P 27-41
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/CHEB_2024_25_4_a1/
%G ru
%F CHEB_2024_25_4_a1
A. Allemand. On the information profile of three random variables with two outcomes. Čebyševskij sbornik, Tome 25 (2024) no. 4, pp. 27-41. http://geodesic.mathdoc.fr/item/CHEB_2024_25_4_a1/